
© Intel Corporation, 1979

· APPLICATION
NOTE

3-110

Ap·46 , .

9800752

INTRODUCfION

Complex electronic systems require the utmost in reli­
ability. Especially when the storage and retrieval of
critical data demands faultless operation, the system
designer must strive for the highest reliability possible.
Extra effort must be expended to achieve this high
reliability. FortUliately, not all systems must operate with
these ultra reliability requirements.

The majority of systems operate in an area where system
failure ranges from irritating, such as a video game
failure, to a financial loss, such as a misprinted check.
While these failures are not hazardous, reliability is
important enough to be designed into the system.

A memory system is one of the system components for
which reliability is important. Also, it is one of the few
system components which can be altered to greatly
enhance its reliability. The purpose of this report is to
examine different methods of error encoding, especially
Error Correction Codes (ECq, to increase the reliability
of the memory system.

SYSTEM RELIABILITY

Individual device reliability is the foundation of memory
system reliability. Reliability is expressed as mean time
between failures. The mean time between failures
(MTBF) of a system is a function of the number of
devices and the device failure rate. Failure rate of the
memory device can be obtained from the reliability
'report on the specific device. MTBF of the device is:

where To = MTBF of the device

). = device failure rate (070/1000 hrs)

and MTBF of the system is approximately:

To
Ts =0

where Ts = MTBF of the system

D = number of devices in the system

[II

[21

As the number of devices required to construct a system
becomes larger, the system MTBF becomes smaller,

A plot of system MTBF as a function of the number of
memory devices is Shown in Figure 1 for different failure
rates, Included for reference are the failure rates of the
Inte\@ 2104A 4Kxl RAM and the Intel@ 211716Kxl
RAM. Using RAMs which are organized one bit wide,
the amount of devices required for a system is calculated
by multiplying the number of words by the 'word length

3·111

0,01%11000
HR ,

1.000.000
100 YRS

100.000
10YRS

10.000
1 YR

1.000
1 MONTH

1 WK

100

10.000Ioa...--....L.-I/'----..-I<'-----...J10 10

NUMBER OF DEVICES

Flg~re 1. System Reliability vs Number of Devices

'" II:
::::>
0
:z:
IL
III ...
:::E

and dividing by the size of the RAM. To illustrate,
assume a 1 megaword memory system with,a word width
of32 bits, implementedwith Intel@ 2104A4Kxl RAMs.
The number of required devices is:

, D - 1,048,576 x 32 _ 8 192 d .
- '4,096 -, eVlces

Prediction of failure for this system, shown in Figure I, is
667 hours or 28 days - assuming continuous use and
worst case temperature.

Equation 2 showed that system MTBF is increased when
fewer devices are used. A one megaword memory having
32 bit wide words can be constructed with Intel 2117 16K
RAMs. In this case one fourth as many devices are
required - 2048 devices. From Equation 2, the expected
MTBF should be four times as large - 2668 hours. It is
not. The failure rate from Figure 1 for this system is 2000
hours. Different device failure rates account for this
difference. The failure rate of the 16K is not yet equal to
that of the 4K. Memory device reliability is a function of
time as shown in Figure 2. Reliability improvement often
is a result of increased experience in manufacturing and
testing. In time, the failure rate of the 16K will reach that
of the 4K and one fourth as many devices will result in a
system MTBF approximately four times better.

0.2

~~ o~~
a:~ 0.08
§S 0.07
=~ 0.06

i1:§ 0.05

~ri
>~ 0.04
w
Q

0.03

0.02

----=== --
1.0 L----'L---'----'--'-_-L_...L_-L-_-'-_L---.JL----'
~ TI ~ ~ ~ ~ TI ~ ~ ~

YEAR

Figure 2. Device Failure Rate as a Function of Time.

The failure rate of a system without error correction will
follow a similar curve over time. Indeed, in very large
systems built with large numbers of devices, the system
failure rate may be intolerable, even with very reasonable
device f;tilure rates. To increase the system reliability
beyond the device reliability, redundancy coding tech­
niques have been developed for detecting and correcting
errors.

REDUNDANCY CODES

Redundancy codes add bits to the data word to provide a
validity check on the entire. w.ord. These additional bits,
used to detect whether or not an error has occurred, are
called encoding bits. With M .data bits and K encoding
bits, the encoded word width is N bits. Shown in Figure 3
is the form of the encoded word.

r-----~,N I

1111· .. ·11111····11
L--M --' '----- K-----'

Figure 3. Encoded Word Form

Mathematically, N is related to M and K by:

where N

M

K

N = M+K

number of bits in the encoded word

number of data bits

number of encoding bits

(3)

Exactly how K is related to M, and the number of
required -K bits depends on several factors which will be
described later.

One measure of a code is its efficiency. Efficiency is the
ratio of the number of bits in the encoded word to the
number of bits of data:

Substituting N ~ M + K:

where E = efficiency

M+K
E=~ (4)

All of the data are contained in the M bits. The K bits
contain no data, only validity checks. To maximize the
amount of data in the encoded word, the number of K
bits must be minimized. Examination of Equation 4
shows that the minimum value of K is zero. With K equal
to zero, the efficiency is unity. Efficiency is maximized,
but the word has no encoding bits. Theref~re, it has no
capability to\detect an error.

As an example, consider a two bit word. It can assume 22
or 4 states, which are:

State 1 00
State 2 01

State 3 10

State 4 II

Figure 4. All State. of • Two-Bit Word

All possible states have been used as data; consequently
any error will cause the error state to be identical to a
valid data state.

The mechanics of the encoding bits create encoded words
such that .every valid encoded word has a set of error
words which differ from all valid encoded words. When
an error dccurs, an error word is formed and this word is
recognized as contain'ing invalid data.

By adding one K bit to the two bit word error detectior
becomes possible. The value of the K bit will be such that
the encoded word has an odd number of ONES. As ~ill
be explained later, this technique is "odd" parity.

The sum of the ONES in a word is the weight of the
word. Parity operates by differentiating between odd and
even weights. The encoded word will always have a~ odd
weight as a result of having an odd number of ONES.

If a single bit error occurs, one bit in the encoded word
will change state and the word will have an even weight.
Then in this example, all encoded states with an even
weight - an even number of ones - lare error states.

The value of the encoding bit or parity bit is found by
counting the number of ones - calculating the weight -
and setting the value of K to make the weight of the
encoded word odd. Referring to Figure 4, State I was 00,

3-112

the weight of this word is 0, so K is set to 1 and the weight
of the encoded word is odd. State 2 is 01, the weight is
odd already, so K is set to O. The weight of State 3 is
identical to that of State 2 so K is again set to O. Finally,
State 4 has an even weight (1 + 1 = 2), thus K is 1. The
encoded states of the two bit data word are listed in
Figure 5.

Dala Encoding' Bit

State I 00 I
Stale 2 01 0
Stale 3 10 0
State 4 II I

M K

N

Figure 5. Code BIIs for All Possible States of a Two-Bit Word

To illustrate the error detection, Figure 6a lists all states
of the encoded data word and all possible single bit
errors. Because the encoded word is 3 bits long, there are
only 3 possible single bit errors for each encoded state.

A B C D

Encoded States 001 010 100 III

Error States 000 000 000 011
011 011 101 101
101 110 110 110

Figure 6a. All Possible Slngle·BIt Errors

, Notice that every error state has an even weight, while the
valid encoded states have odd weights.

Converting all the values of these states to decimal
equivalents makes the errors more obvious as shown in
Figure 6b.

Valid States I 2 4 7

0 0 0

Error States
3 3 3

5 5 5

6 6 6

Figure 6b. Decimal Representation of Errors

No error state is the same as any valid encoded state.
Identical error states can be found in several columns.
The fact, that some error states are identical prevents
identification of the bit in error, and hence correction is
impossible. Importantly though,error detection has
occurred.

Figure 6a demonstrates another property of codes. Every
error state differs from its valid encoded state by one bit,
whereas each of the encoded states differs from the
others by two bits. Examine the encoded states labeled B
and D in Figure 6a and shown in Figure 7.

Slate B (0) I (0)
Stale D l!J I l!J

MK
Figure 7. Bit Dlrterence.

These two states have two bit positions which differ. This
difference is defined as distance and these two states have
a distance of two. Distance, then, is the number of bits
that differ between two words. The encoded words have
a minimum distance of two. Longer encoded words may
have distances greater than two but never less than two if
error detection is desired. The error states have a
minimum distance of one from their valid encoded state.

A minimum distance of two between encoded states is
required for error detection. A re-examination of a word
with no' encoding bits shows that the states have a
minimum distance of 1 (see Figure 8). No error detection
is possible because any single bit error will result in a
valid word.

State I
State 2

State 3
State 4

00

01::1} 10:1 Distance of I

11::1

Figure 8. Minimum Distance of a Two·Blt Word

PARITY ,
A minimum distance of two code is implemented with
Parity. Refer to previous section for an explanation.
Parity is generated by exclusive-ORing all thc data bits in
the word, which results in a parity bit. This parity bit is
the K encoding bit of the word. If the word contains M
data bits, the parity bit is:

C bl (jJ b2 (jJ b3 (jJ ••• (jJ bm

where C parity bit

b value in the bit position

The parity bit combines with the original data bits to
form the encoded word as shown in Figure 9. Encoded
words always have either "odd" parity, which is an odd
number of Is ~an odd weight) or "even" parity which is
an even number of Is (an even weight). Odd and even
parity are never intermixed, so that the encoded words all
have either odd or even parity - never both.

When the encoded word is fetched, the parity bit is
removed from the word and saved. A new parity bit is
generated from the M bits. Comparing this new parity bit
with the stored parity bit determines if a, single bit error
has occurred.

Figure 9. Encoded Word Form

3-113

Consider the two bit data word whose value is "01."
Exclusive-NORing the two data bits generates a parity bit .
which causes the encoded word to have odd parity:

C~OElli

C=O

The encoded word becomes:

M K

o I 0

L parity
LSB of data

Assume that an error occurs and the value of the word
becomes "110." Stripping off the parity bit and
generating a new parity bit:

transmitted parity = 0

transmitt~d word = II

new parity of transmitted word = T$1 = 1
,

generated parity"* transmitted parity

Note that the error could have occurred in the parity bit
and the final result would have been the same. An error
in the encoding bit as well as in the data. bits can be"
detected.

Although parity detects the error, no correction is
possible. This is because each valid word can generate the
same error state. Illustration of this is shown in Figure
10.

eorred Word
Possible

Single Bit
Error wilh Parity

001
III
o 1 0

o 1 1
01" 1
01 1

Figure to. Possible Errors "

Each of the errors is identical to the others and
reconstrudion of the original word is impossible.

Parity fails to detect an even number of errors occurring
in the word. If a double bit error occurs, no error is
detected because two bits have changed state, causing the
weight of the word to remain the same.

Using the encoded word "010" one possible double bit
error (DBE) is:

I I
~parity

Checking parity:

The transmitted parity and the regenerated parity agree.
Therefore the technique of parity can detect only an odd
number of errors.

In summary, single bit parity will detect the majority of
errors, but cannot be used to correct errors. Using parity
introduces a measure of confidence in the system. Should
a single bit error occur, it will be detected.

ERROR CORRECTION

Classical texts on error coding contain proofs showing
that a minimum distance of three between encoded words
is necessary to correct errors. While this fact does not
describe the code, it does give an indication of the form
of the code.

Correcting errors is not as difficult as it first appears. As
a result of a paper published by R. W. Hamming on error
correction the most widely used type of code is the
"Hamming" code. Using the same technique as parity,
Hamming code generates K encoding bits and appends
them to the M data bits. As shown in Figure II, this N bit
word is stored in memory.

111········111 DIJ
L---------N-"--------~

Figure n. Encoded Word Form

Thus far the mechanism is similar to parity. The only
difference is the number of K bits and how they relate to
the M data bits.

When the word is read from memory, a new set of code
bits (K ')" is generated from the M' data bits and
compared to the fetched K encoding bits. Comparison is
done by exclusive-ORing as shown in Figure 12. Like
parity the result of the comparison - called the
syndrome word - contains information to determine if
an error has occurred. Unlike parity, the syndrome word
also contains information to indicate which bit is in error.

ITIIlJ K

.. o:IIJ]K'

ITIIlJ Syndrome

Figure 12. Syndrome Generation

The syndrome word is therefore K bits wide. The
syndrome word has a range of 2K values between 0 and
2K - 1. One of these values, usually zero, is used to
indicate that no error was detected, leaving 2K - I values
to indicate which of the N bits was in error. Each of
these 2K - 1 values can"be used to uniquely describe.a bit
in error. The range of K must be equal to or greater than
N. Mathematically, the formula is:

2K-I ~ N

but N = M+K

and 2K - 1 ~ M + K (5)

3·114

Equation 5 gives the number of K bits needed to correct a
single bit error in a word containing M data bits. Ranges
of M for various values of K are calculated and listed in
Table I.

K

Single Correct! Single Correct/
Single Detect Double Detect

<;M<
4 II

12

27
58

121

26
57

120
245

Table I.

4
II
26
57

\0
25
56

119

Range of M for Single Correct/Single Detect or Double Detect Codes
for Values of K

To detect and correct a single bit error in a 16 bit data
word, five encoding bits must be used. As a result, the
total number of bits in the encoded word is 21 bits.

Efficiencies of single detect - parity - and single
,detect/single correct codes as a function of the number of
data bits are shown in Figure 13. For large values of M,
'the efficiency of single detect/correct is approximately
equal to that of the single detect code - parity.

10

E=M~K

SINGLE CORRECT
DOUBLE DETECT

20 30 40 50
DATA BITS/WORD

Figure 13. Code Efficiency vs Data Word Size

60 70

CODE DEVELOPMENT

Contained in the syndrome word is sufficient informa­
tion to specify which bit is in error. After decoding this
information, error correction is accomplished by
inverting ' the bit in error. All bits, including the encoding
bits - called check bits -, are identified by their
positions in the word.

Bit N Bit l Bit 2 Bit I

I·· .. ·1
~------N------~

Figure 14. Positional Representation of Bits In the Word

Bits in the N bit word are organized as shown in Figure
14. Bit numbers shown in decimal form are converted to
binary numbers. From equation 5, this binary number
will be K bits wide. In Figure 15 is an example using a 16
bit data word. Because there are 16 data bits, M equals
16, K equals 5 and N equals 21. Shown in Figure 15 the
word'is binary equivalent of the position. Notice that
where the M and the K bits are located is not yet
specified.

_OO'lOOr---\OV'\~MN_O

NN----------~_~~~.~N_

~~~~~~~~~~~~~~~~~~~~~ 
N 

101010101010101010101 
00 II 00 II 00 II 00 II 00 II 0 

110000111100001111000 

000000 i II I II I 10000000 

I I I I I I 0 0 0 0 0 0 0 0 0 0 0 0 00 0 

Bit 
Position 

Value 

2° LSB 
2' 
22 

2' 
2' MSB 

Figure IS. Binary Value of Bit Position. 

The syndrome word is the difference between the fetched 
check bits and the regenerated check bits. Identification 
of the bit in error by the syndrome word is provided by 
the binary value of the bit position. The, syndrome word 
is generated by exclusive-ORing the fetched check bits 
with the regenerated check bits. Any new check bits that 
differ from the old check bits will sell s in-the'syndrome 
word. To identify bit 3 as a bit in error, the syndrome 
word will be 00011, which is the binary value of the bit 
position. Weight is determined only by the I s in Ihe bit 
position chart in Figure 15, so they are replaced wilh an 
X and theOs are deleled. The resuh is shown in Figure 16. 

-OO'lOOt-\CIV'I'o:t""N ..... O NN __________ O'IOOt-\OV'I'o:tI"')N_ 

~~~~~~~~~~~~~~~~~~~~~ 

I N ~
X X X X X X X 'x xx x cr

xx xx xx xx xx a
xx xxxx

xxxxxxxx
xxxxxx

xxxx C4

C8

CI6

Figure 16. Relationship of Data Bits and Check Bits.

3-115

Check bit function is now defined by equating the check
bits to the powers of 2 in the binary positions. Each check
bit will operate on every bit position that has an X in the
row shown in Figure 16. Five bit positions - 1,2,4, B,
and 16 - have only one X in their columns. The corres­

,ponding check bits are in these respective locations.
Check bit CI is stored in Bit Position I, C2 is stored in
Bit Position 2, and C4, CB, and CI6 are stored in
positions 4, B, and 16 respectively. Because each of these
positions has one X in the column, the check bits are
independent of one another. If a check bit fails, the
syndrome word will contain a single "1." A data bit
failure will be identified by two or more "Is" in the
syndrome word.

The data bits are filled in the positions between the check
bits. The least significant bit (LSB) of data is located in
position 3.

Data Bit 2 is stored in position 5 - position 4 is a check
bit. Figure 17 shows the positions of data bits and check
bits for sixteen bits of data.

When the check bits are generated for storage, bits I, 2,
4, 8, and 16 are omitted from the generation circuitry
because they do not yet exist, being the result of
generation.

Parity check on the specified bits is used to generate the
. check bits. Each check bit is the result of exclusive-ORing

the data bits marked with an "X" in Figure lB. Check
bits are generated by these logic equations:

CI = MleM2eM4eMSeM7eMgeMIleMI2eMI4eMI6

C2 = MleM3eM4eM6eM7eMlOeMII .. MI3 .. MI4

C4 = M2 .. M3eM4 .. MS .. MgeMIO .. MII .. MI6eMI6

CS = MSeM6eM7 .. MS .. MgeMlOeMII

CI6 = MI2 .. MI3eMI4eMISeMI6

How the Hamming code corrects an error is best shown
with an example. In this example, a data word will be
assumed, check bits will be generated, an error will be
forced, new check bits will be generated, and, the
syndrome word will be formed. Assuming the l6-bit data
word

0101 0000 001I 1001

Check bits are generated by overlaying the data word on.
the Hamming Chart of Figure 16 and performing an odd
parity calculation on the bits matching the "Xs,"

16 15 14 13 12 II 10 9 8 7

CI6

21 20 19 18 17 16 15 14 13 12 II

6 5

10 9

The simplest mechanism to calculate the check bits is
shown in Figure lB. The data word is aligned on the
chart. Because weight and hence parity are affected only
by "Is," only 'columns containing" Is" are circled for
identification. The check bits are the result of odd parity
generated on the rows. For example, the Cl row has three
"Xs" circled; therefore CI is 0 to keep the row parity
odd. In this example, all other rows contain an even
number of circled "Xs;" therefore the remaining check
bits are" I s," These check bits' are incorporated into the
data word, forming the encoded word. Performing this
function, the 21 bit encoded word is:

CI6 CB C4 C2 CI

0101 0 I 000 0011 I 100 0

Forcing an error with bit position 7 - data bit 4:

CI6 CB C4

0101 0 I 000 0011 I 000

C2 CI

o

A new set of check bits is generated on the error word as
shown in Figure IB and is:

CI6 CB C4 C2CI

o 0

When the new check bits are exclusive-ORed with the old
check bits, the syndrome wor.d is formed:

CI6 CB C4 C2 CI

O· 0 I New check bits

o Old check bits

o 0

The result is 00111, indicating that bit position 7 - data
bit 3 - is in error. Bit position of the error is indicated
directly by the syndrome word.

While this "straight" Hamming code is simple, imple­
menting it in hardware does present some problems.
First, the number of bits exclusive-ORed to generate
parity is not equal for all chec.k bits. In the preceding
example, the number of bits to be checked ranges from
10 to 5. The propagation delay of a 10 input exclusive­
OR is much longer than that of a 5 input exclusive-OR.
The system must wait for the longest propagation delay
path, which slows the system. Equalizing the number of
bits checked will optimize the speed of the encoders.

4 3 2

C8

8 7 6 5

I

C4

4 3

C2

2

CI

I

Data Bits

Check Bits

Position

Figure 17. Dala and Check Bit Posillons in Ihe Encoded Word.

3-116

16 15 14 IJ 12 CI6 II 10 C8 C4 C2 CI

X X X X X IX X X X X X CI

X X X X X X X X X X C2

X X X X X X X X X X C4
I

X X X X X X X ,x C8

X X X X X X CI6

Figure 18a. Hamming Chart.

Bi, Position 21 20 19 18 17 16 15 14 13 12 II 10 9
Da'a Bi' 16 15 14 13 12 CI6 II 10 9 8 7 5 C8 4' 2 C4 I C2 CI

:~I ~~I:O
Word as S,ored 0 Q Q ~ : ~ : : ~ ~ ~:: ~

CI '0

C2 I
C4 I
C8 I
CI6 I

W.,. ,,'",." ~ ~ : ~ : ~ i ; : ~ ~ ~ , ~ ; ~
10 1
~

o
CI I
C2 0
C4 0
C8 I

C16 I

Figure 18b. Check Bit Generation.

Secondly, two bits in error can cause a correct bit to be
indicated as being in error. For example, if check bits CI
and C2 failed, data bit I would be flagged as a bit in
error.

Because of these two difficulties, the Error Correction
Code (ECC) most commonly used is a "modified"
Hamming code is most widely used which will detect
double bit errors and correct single bit errors.

SINGLE BIT CORRECT /
DOUBLE BIT DETECT CODES

Modern algebra can be used to prove that a minimum
distance of four is required between encoded words to
detect two errors or correct a single bit error. An excellent
text on this subject is Error Correcting Codes by Peterson
and Weldon.

One possible double bit error is two check bits. Using
straight Hamming code, the circuit would "correct" the
wrong bit. Double error detection techniques - modified
Hamming codes - prevent this by separating the
encoded words by a minimum distance of four. As a
result each data bit is protected by a minimum of three
check bits, so that the syndrome word always has an odd
weight. Therefore, even weight syndrome words cannot
be used. When two check bits fail, the syndrome word
has two "I s" or an even weight. Even weight is

detectable as a double bit error by performing a parity
: check on the syndrome word. If two data bits fail, again

the syndrome word has an even weight - a detectable
error.

Adding one additional check bit to the correction check
bits provides the capability to detect double bit errors.
The number of encoding or check bits required to detect'
double bit errors and correct single bit errors is:

Substituting M + K for N:

2K-1 ~ M+K [6]

Equation 6 is similar to equation 5, which describes single
bit correct and detect except for the left side of the
inequality, which shows one additional encoding bit is
required. For single bit detect and correct the left side of
the inequality was 2K. Table I also list.s the ranges of M
for valui!s-of K, for a direct comparison to single bit
detect and single bit correct codes.

Figure 13 includes the efficiency curve for single bit
correct/ double bit detect (SBC/DBD) codes for values of
M., As would be expected, because of. the additional
encoding bit the efficiency is slightly lower. For large
values of M, the efficiency of this code approaches' unity'
like the two other curves.

3-117

i
I

Syndrome words for the SBC/DBD code are developed
like the straight Hamming code, except that syndrome
words do not map directly to bit positions. The syndrome
word has an odd weight and does not increment like
straight Hamming code. In addition, implementation
considerations can impose constraints. For example, the
74S280 parity generator is a nine input device. If a check
bit is generated from ten bits, extra hardware is required.

Empirical methods can be used to form the syndrome
words. All possible states of the encoding bits are listed
and those with an even weight are stricken from the list.
Again like Hamming code, states which have a weight of
one are used for syndrome words for check bits. For a
sixteen bit data word, six check bits are required. Figure
19 lists the possible states of syndrome words for a 16 bit

, data word.

C6 CS C4 C3 C2 CI

o
o 0

o

o 0

I

o 0

o

o
I

o 0 0

o 0
o 0 0

o 0

Figure 19. Possible Syndrome Words

In Figure 19 only twenty syndrome words for data bits
are listed, because the possible words with a weight of 5
were eliminated so that every data bit would have' only
three bits protecting it. This simplifies the hardware
implementation. If there are more than 20 data bits,
states with a weight of 5 must be used. All states listed in
Figure 19 are valid syndrome words, so thatthe problem
becomes one of selecting the optimum set of syndrome

,words. ,To minimize circuit J propagation delay the
. number of data bits checked by each encoding bit should
be as close as possible to all the others.

The syndrome words can be mapped to any bit position,
providing that identical, code generations are' done at
storage and retrieval times. Syndrome word mapping
may be arranged to solve system design problems. For
example, in byte oriented systems the lower order
syndrome bits are identical, so that the circuit design may
be simplified by using these syndromes to determine
which bit is in error, and the higher order syndromes to
determine which byte is in error. Double bit detect/single
bit correct code is implemented in hardware as a straight
Hamming code would be.

DESIGN EXAMPLE

To illustrate code development, the design example uses
single bit correct/double bit detect code on a 16 bit data
word. In addition to the memory, the ECC system has
five components: write check bit generator, read check
bit generator, syndrome generator, syndrome'decoder,
and bit correction. Connected together as shown in
Figure 20, these components comprise the basic system.
Features can be added to the system to enhance its
performance. Some systems include error logs as a
feature. Because the address of the error and the errors
are known, the address and the syndrome word are saved
in a non-volatile memory. At maintenance time this error
log is read and the indicated defective devices are
replaced. Being a basic design, this example does not
include an error log.

Write check bits are generated when data are written into,
the m~mory, while read check bits are generated when
data are read from the memory. Off-tile-shelf TTL is
used to implement the design'. Check bits are generated
by performing parity on a set of data bits, so that this
function is performed by 74S280 9'bit parity generators.
One parity generator for each check bit is required.
Because the read and write check bit generations are the
same, the circuits are sim.ilar. One minor difference
should be noted. In this example, the check bit will be
formed from parity on eight data bits. The 74S280 parity
generator has nine inputs; therefore, the write check bit
generator will have the extra input grounded while the
read generator has as an input the fetched check bit.
Developed directly in the read check bit generator is the
syndrome bit, ,which saves one level of gating. Figure 21
shows,the identical Jesuits of generating the syndrome bit
by exciusive-ORing the fetched check bit with the
regenerated check bit and forming the syndrome bit in
the' read check bit generator.

Implementing the syndrome generator word in this way
reduces the circuit propagation delay by approximately
10 nanoseconds. This implementation imposes a
restriction on the code to be used - the check bit must be
formed from no more than eight data bits.

3-118

\

f"\.
DATA OUT ,,16 B(X) ,16

DO(X)
CORRECTOR, DECODER

BUS S(X){6

~

. , 16

DATA IN DI(X) 16 16 M D(X) READ

~
J

DATA OUT
CHECK BIT

GENERATOR

MEMORY SYNDROME
GENERATOR

WRITE 6 CHECK BITS 6
CHECK BIT ~ OUT C(X) " GENERATOR

Figure 20. Block Diagram of ECl; System.

5280

FETCHED CHECK BIT--\~

REGENERATED-JL../""SvNDROME
CHECK BIT 586 BIT

DATA BITS
FOR CHECK BIT

GENERATION

FETCHED
CHECK BIT

Figure 21. Syndrome Bit Generation.

(

2000

SYNDROME
BIT

Figure 19 listed the possible syndrome words for a 16 bit While there are twenty possibilities for syndrome words,
only 16 are needed. Each row contains ten "Is" and each
column contains three "Is." Four columns are
eliminated but in a way that each row contains eight
"Is." When the columns are matched to data bits, the
"Is" i,n each row define inputs to the 748280 parity
generators' for the given check bit. Eliminating the two
columns from each end results in sixteen columns with
each row having eight "Is." These remaining sixteen
columns which match the data bits are rearranged in
Figure 23 for convenience of printed circuit board layout
and assigned to the data bits. The syndrome words for
check bits are also shown for complete code
development.

data word. T'hese are relisted in Figure 22 with the
syndrome words for the check bits and the zeros deleted.

II I I II I CI
I I I I I C2

I I I II II Cl
I I I II I I I I C4

I I II III II I C5
\I \I \I I I II C6

Figure 22. Possible Syndrome Words with Three Check Bits.

Dala Bit

MI6 MIS MI4 MI3 MI2 Mil MIO M9 M8 M7 M6 MS M4

X X X X X X

X X X X X' X

X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X

Figure 23.

3·119

M3 M2 MI CI C2 C3 C4 CS C6

X X X CI

X X X C2

X X X Cl

X C4

X C5

X X X X C6

With this information the check bit generators can be
designed. Figure 24. depicts write check bit generators
while Figure 25 depiCts read check bit generators.

Double bit error detection is accomplished by generating'
parity on the syndrome bits. Except for the syndrome
word of 00000o - no error -even parity will be the
result of a double bit error. Hardware implementation is
shown in Figure 26. OR-ing the syndrome detects the
zero state, which has even parity. and prevents flagging
this state as a double bit error.

Decoding the syndrome word must be done to invert the
one bit in error. Combinational logic will decode only
those syndrome states which select the one of sixteen bits
for correction. Figure 28 shows the logic of the decoder.

011 A
013
016
018

5280 0110
0112
0111
0116

A

5280

-
013
014· ,
019

0111 . 5280

rooD
Cl

1000
C2

D1(j2

0113 IOOO

g::~ .' C3
I

015 .
016

0112 '.
01(j4

0114 roOD
0113 . 5 .. 280

g::~' '. C4

017
018
019

OlIO
0111
0112
0113
0114

I

A

5280

5280

rOOD
C5

'1000
C6

.'igure 24. "'rile Chet.'k Bil Generalors

3-120

51
52
53
54
55
56

Mri18 -
M02 •
M03 • rEVEN

• Sl!
M04. ,
M05 '. 5280
M06 •
M07 ' rooD
M08 : 56

C6 I

M078'
P/l08 •
M09 '. rEVEN M010 : Sl!

MOll • 5280

:g:~ : rOOD
, 55

MOl4 " ,
C5 I

M048'
M05 •
M06 • rEVEN

M012 : ~
M013 • 5280

:g:~ : WO!)
M016 : 54
,C4 I

M028
M03 •
M04 " 1EVEN
M09 : ~

MOll • 5280
M013 : 1000'.

:g:~ : 53
C3 I

M018
M02 • '
M05'. I EVEN
M07 : Sl!
M09 • 5280

:g:~ : WOO.
M015 : 52.

C2 I

MOl8
M03 • .
M06 • rEVEN
M08: . S1

MOIO • 5280

:gg :. ~?OO
M016 •

Cl I

.·igure 25. Read Check Bit Generators

A
rOoo 1-------OBE

5280

LEVEN
H 5BE

m~ S2

S3
!Sol . .

SS

SlI

530 NOERROR

f'igure 26. Double f.rror Decoder

~~::::)D-DATA BIT 1

~;::::)D- OATA BIT 2

~;::::)D-- DATA BIT 3

~:::::)D-- DATA BIT 4

~~::::)D-- DATA BIT 5

~:::::)D-- DATA BIT 6

~~::::)D-- DATA BIT 7

~:::::)D-- DATA BIT 8

lK

ECC

~~::::)~ DATA BIT 9

Ml0 --\D-- DATA BIT 10
Bl0--/

~~~::::)D-0ATA 8;r 11 

M12 ---\D- DATA BIT 12 
B12~ 

M13 --4D- DATA BIT 13 
B13--/ 

M14 ---4D- DATA BIT 14 
B14---1 

M15---\~ DATA BIT 15 
B15--1~ 

M16 --4D- DATA BIT 16 
B1 6--/ 

Figure 27.Correction Circuit. 

.--__ ..., INHF .... -4_-~ MD()()- UNCORRECTED DATA 
FROM MEMORY 

MOl A 
MD2 
MD3 
M04 
MD5 5280 

• MD6 
MD7 
MOB 

C6 

M07 A 
M08 
M09 

M010 
MOIl 5280 
MOI2. 
M013 
M014 

C5 

M04 A 
M05 
M06 

M012 
M013 5280 
M014 
M015 
M016 

C4 

MD2 A 

1000 

1000 

1000 

MD3 S3 
MD4 
MD9 

MOIl 5280 

=gl~ F'O=OD=-_--' 
M016 

C3 

MOl A 

=g~ 52 
M07 
M09 52BO 

M010 1000 
M014 F='----' 
M015 

C2 

MOl A 

=g~ 51 
M08 

M010 5280 

51 
52 
S3 
54 

>EVEN 

OBE 

55 '502 
56 

MOIl 1000 
M012 1-------' 
M018 

Cl 

Figure 28. Complete Correction Circuit 

3-121 



Enabling, the correction logic, the decoded B(x) signals 
become "high" to invert the output of the 74S86 exclu­
sive-OR circuits. If the B(x) signals are "low" the output 
of the correction is the same level as the input. The 
correction circuit is shown in Figure 29. 

Connecting the five circuits as shown in. the block 
diagram of Figure 20 completes the error correction 
circuitry. 

SUMMARY 

An unprotected memory has a system MTBF which is 
approximately equal to the device MTBF divided by the 
.number of devices. Redundancy codes are used to protect 
memories. While parity is a redundancy code, it only 
indicates that an error has occurred. A "modified" 
Hamming code tan correct single bit· errors and detect 
double bit errors; truly enhancing the system MTBF. 

This report has laid the foundation of ECC basic 
concepts. Building on this foundation, the next report 
will address the mathematics for calculating the 
enhancement factor of ECC in a system environment. 

REFERENCES 

I. "2107A12107B N-Channel Silicon Gate MOS 4K 
RAMs," Reliability Report RR-7, Intel Corporation, 
September, 1975. 

2. "211512125 N-Channel Silicon Gate IK MOS 
RAMs," Reliability Report RR-14, Intel Corporation, 
1976. 

3. "2104A N-Channel Silicon Gate 4K Dynamic RAM," 
Reliability ReportRR-15, Intel Corporation, Septem­
ber, 1977. 

4. "2116 N-Channel Silicon Gate 16K Dynamic RAM," 
Reliability Report RR-16, Intel Corporation, August, 
1977. 

5. R. W. Hamming, "Error Detectihg and Error Correc­
ting Codes," Bell System Technical Journal, Vol. 26 
(April 1950), pp. 147 -160. 

6. Len Levine and Ware Meyers, "Semiconductor 
Memory Reliability with Error Detecting and Correc­
ting Codes," Computer, October, 1976, pp. 43-50. 

7. -, "Modern Algebra for Coding," Electro­
Technology, April, 1%5, pp. 59-66. 

8. William W. Peterson and E. J. Weldon Jr., Error 
Correcting Codes, MIT Press; Cambridge, Mass., 
1972. 

3-122 


