

Multi-ICE Multi-ICE Theory of Operation

Table 9-6. How an ICE™ Process Becomes DORMANT

Current State Actions That Set Process DORMANT
Of Process From Current State

ACTIVE READY • Process executes last command in buffer.

• Process executes KILL command.

• HOST executes KILL PRn or KILL ALL command.

• User kills process through ESC.

ACTIVE NOT READY • Process breaks emulation, finds buffer empty.

• HOST executes KILL PRn or KILL ALL command.

• User kills process through ESC.

SUSPENDED • HOST executes KILL PRn or KILL ALL command.

Executing LOCK • Process executes last command in buffer.
Block (ACTIVE) • Process executes KILL command.

• Process breaks emulation, finds buffer empty.

• User kills process through ESC.

ACTIVE READY (Executing)

When the HOST process executes an ACTIVATE PRn command, the commands
in the ACT IV ATE list are transferred to PRn's command buffer and PRn is set
ACTIVE READY. The next time the dispatcher polls PRn, the first task from its list
is executed; the task can be one of the following:

• Execute one simple command other than STEP or GO.
• Emulate one instruction in single-step mode.
• Enter real-time emulation.

After executing any task other than entering emulation, the ICE process remains
ACTIVE READY if it still has commands in its buffer.

ACTIVE NOT READY (Emulating)

When an ICE process executes a GO command, it remains ACTIVE but is set NOT
READY; it is waiting for the hardware to report "emulation terminated". The pro­
cess cannot execute any further commands until emulation terminates. If a break
condition has been enabled, emulation can terminate on the break condition. If no
breakpoints have been set (or if none are ever encountered during emulation),
emulation continues until one of the following occurs:

• An error is encountered during emulation (for example, GUARDED ACCESS).

• The user breaks emulation by entering a BREAK PRn or BREAK ALL
command through the HOST; the BREAK command sets the ICE process
ACTIVE READY if the process has any commands left, or DORMANT if no
commands remain.

• The user breaks emulation by entering a SUSPEND PRn or S.USPEND ALL
command; the process becomes SUSPENDED. If the process is continued by
the HOST, emulation resumes where it broke off and the process becomes
ACTIVE NOT READY again.

• The user kills the process by entering a KILL PRn or KILL ALL command; the
process becomes DORMANT.

• The user kills the process by pressing ESC and answering "Y" to the query
"KILL PRn?"; the process becomes DORMANT.

9-13

Multi-ICE Theory of Operation

9-14

SUSPENDED (NOT READY)

You can suspend an ACTIVE process through the HOST by entering a SUSPEND
PRn command. If both ICE processes are ACTIVE, you can suspend them both
with a SUSPEND ALL command. An ICE process can suspend itself by executing a
SUSPEND command in its ACTIVATE list.

SUSPENDED (Executing)

If the process was executing (ACTIVE READY) when suspended, it finishes its cur­
rent action, then is set SUSPENDED (Executing). It can resume executing when you
enter a CONTINUE PRn or CONTINUE ALL command through the HOST.

SUSPENDED (Emulating)

If the process was emulating (ACTIVE NOT READY) when suspended, emulation
is terminated between instructions and the "EMULATION TERMINATED"
message is displayed. The process is set SUSPENDED (Emulating). If the process is
subsequently continued, emulation resumes with the instruction pointed to by the
program counter and the "EMULATION BEGUN" message is displayed.

A suspended process can be killed (set to DORMANT) by entering a KILL PRn or
KILL ALL command to the HOST. A process that is SUSPENDED (Emulating)
can be set to SUSPENDED (Executing) by the BREAK command.

The Dispatcher
The dispatcher is a piece of software that is called when one of the following occurs:

• A process (HOST or ICE) completes the execution of a simple command,
emulates one instruction in single-step mode, or enters real-time emulation.

• The parser encounters a final CI.

• An error occurs; the dispatcher is called after the error message is displayed.

The dispatcher has two main functions:

• Check for interrupts (ESC key, spacebar, hardware emulation terminated,
hardware error).

• Allocate a task slice to the next READY task, and exit the dispatcher.

The operation of the system depends on two sequences:

• The sequence in which interrupts occur, certain interrupts are processed,
multi-ICE commands are executed, and the dispatcher is called. This sequence is
external to the dispatcher.

• The dispatcher's internal sequence of checking and processing certain interrupts
and selecting the next task to dispatch.

The external sequence of interrupt processing and command execution can affect the
dispatcher by altering a "dispatch table" between polls. The dispatch table is
discussed in the next section.

The dispatcher's internal sequence of interrupt processing and task selection is
diagrammed in figure 9-6. The next several sections give the details on this sequence
and how it interacts with the external sequence of interrupts and commands.

Multi-ICE

Multi-ICE

182-12

CHECK
FOR
INTERRUPTS

DISPATCH
NEXT
TASK
SLICE

Multi-ICE Theory of Operation

Figure 9-6. Dispatcher Functional Diagram

9-15

Multi-ICE Theory of Operation

9-16

Dispatch Table

The dispatcher refers to a table that contains the current task status (READY INOT
READY) and LOCK status of the HOST process, PRl, and PR2, and the task status
of the HOST parser. The conditions that govern the task status of these four com­
ponents are discussed earlier in this chapter; LOCK status must now be introduced
to complete the picture of the dispatcher's decision mechanism.

A process is LOCKed when it is executing or emulating from within a LOCK com­
mand block. The parser cannot be locked. When a locked process is dispatched, the
process retrains control of the dispatching mechanism and no other process can be
dispatched until the locked process becomes unlocked again. Details on how the
dispatcher treats a locked process are given later in this chapter.

Table 9-7 summarizes the conditions that affect task status and LOCK. You can
imagine that the table used by the dispatcher does not contain the conditions
themselves as shown in table 9-7, but can contain TRUE or FALSE values depend­
ing on which combinations of conditions are currently TRUE when the dispatcher
checks the table (polls a task).

Table 9-7. Dispatch Table

Task READY NOT READY LOCKED

HOST • ACTIVE and not • DORMANT. • ACTIVE and executing
Process emulating. • ACTIVE and emulating. or emulating from

within a LOCK block.
• ACTIVE and waiting on

ACTIVE ICE process.

PR1 • ACTIVE and not • DORMANT. • ACTIVE and executing
emulating. • ACTIVE and emulating. or emulating from

within a LOCK block.
• SUSPENDED.

PR2 • ACTIVE and not • DORMANT. • ACTIVE and executing
emulating. • ACTIVE and emulating. or emulating from

within a LOCK block.
• SUSPENDED.

Parser • No process ACTIVE. • Any process ACTIVE. -

Console and Hardware Interrupts

The system is prepared to process two categories of interrupts:

1. Interrupts from the ~onsole (spacebar, ESC, CTRL S, CTRL Q).

2. Interrupts from the hardware (emulation terminated or hardware error report).

Console Interrupts

Interrupts from the console are enabled unless an interrupt is currently being
processed.

Spacebar

A space entered when the prompt is displayed is of course treated as a space
character. To produce an interrupt, the spacebar must be pressed when the parser is
suppressed by one or both ACTIVE ICE processes. Under this condition, pressing
the spacebar invokes an interrupt routine that sets a "prompt" flag to TRUE. The

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

parser is set READY when "prompt" is TRUE and the HOST process is DOR­
MANT. The dispatcher is not involved in setting the "prompt" flag or in setting the
parser READY; these actions update the dispatch table without calling the dis­
patcher. However, the next time the dispatcher polls the parser and finds it READY,
the parser is dispatched and the prompt is issued.

CTRL S, CTRL Q
Control S (CTRL S) and Control Q (CTRL Q) are also handled as console inter­
rupts; they do not affect the dispatch table.

CTRL S halts all processing except emulation-in-progress and causes any display to
pause between characters. CTRL Q continues any processing that was halted with
CTRL S and lets the display continue with the next characters.

While the system is halted on CTRL S, the dispatcher cannot be called. As a result,
no task can be dispatched. In addition, recognition of hardware interrupts is sup­
pressed; thus, if an emulating process breaks emulation during a CTRL S halt, the
"EMULATION TERMINATED" message cannot be displayed until you continue
the system with CTRL Q.

ESC Key
While the prompt is displayed, the ESC key aborts the command that is being
entered; ESC does not terminate the parser's task, however, and another prompt is
issued automatically. Pressing the ESC key while the parser is suppressed (some pro­
cess is ACTIVE) invokes an interrupt routine that sets an "aborted" flag to TRUE.
When the dispatcher is called, it checks the flag; if "aborted" is TRUE, the dis­
patcher calls an abort routine to perform the following actions:

• The HOST process is set DORMANT (NOT READY) if it is not already
DORMANT.

• The message "HOST PROCESSING ABORTED" is displayed.

• If PRI is ACTIVE (not suspended or dormant), the system displays the query
"KILL PRl?". To set PRI DORMANT, enter "Y" followed by cr. To allow
PRI to remain ACTIVE press cr immediately (entering any character other than
"Y" also allows PRI to remain ACTIVE).

• If PR2 is ACTIVE, the system asks "KILL PR?". Enter "Y" cr to set PR2
DORMANT, or enter cr to allow PR2 to remain ACTIVE.

After performing these actions, the abort routine returns control to the dispatcher.
The dispatch table has been updated to include the effects of the abort (HOST DOR­
MANT) and of the user's responses to the "KILL PRn?" queries. Specifically, if no
process remains ACTIVE upon return, the parser has been set READY.

Hardware Interrupts

When an ICE hardware module breaks emulation or encounters an error condition,
it informs the software of the condition through an interrupt.

Hardware interrupts are enabled only when the software is able to handle interrupt
smoothly. One of these places is during the dispatcher's internal sequence, since the
dispatcher is called when a task is completed and the next task has not yet been
dispatched. The effect is the same no matter where the interrupt is checked. This
discussion assumes that the dispatcher is checking the hardware interrupts; figure
9-6 shows the place in the dispatcher's internal sequence where the hardware inter­
rupts are checked.

9-17

Multi-ICE Theory of Operation

9-18

Emulation Terminated
Emulation terminates on a breakpoint, an error, or after a BREAK, SUSPEND, or
KILL command. When the dispatcher checks the interrupt and detects any break
other than a hardware error, it calls an interrupt routine to take the following
actions:

• The message "EMULATION TERMINATED, PC = address" is displayed.
The value of PC points to the address of the next instruction to be emulated; the
address is displayed in the current BASE, or symbolically if SYMBOLIC
displays are enabled (see chapter 4).

• The process and task status of the process that broke emulation are changed to
new settings. The new setting depends on the condition that broke emulation
and on the commands that remain to be executed in the process' command list,
as discussed earlier in this chapter.

After these actions have been completed, control returns to the dispatcher; the
dispatch table has been updated to reflect the new status of the process that broke
emulation.

Hardware Errors

If a hardware error occurs during emulation or while any other command is being
executed, the error is detected when the dispatcher checks for hardware interrupts.
In this case, an error message is displayed to identify the error type to the user.
When the error occurs during emulation, emulation terminates but no termination
message is displayed; the status of the process is also updated to reflect the break in
emulation. When a command other than emulation produced the error, the status of
the process that executed the command is changed to DORMANT if its command
list is exhausted; if it still has commands, it remains ACTIVE READY.

After displaying the error message and updating the dispatch table as necessary, the
system returns control to the dispatcher to resume its internal sequence.

Referring to figure 9-6, the dispatcher reaches this point when it has finished check­
ing for interrupts. Its next function is to determine whether any tasks are ready to be
dispatched, and if so which task to dispatch.

Allocating Task Slices

A task slice is the segment of time required for a process or the parser to complete a
task. When a process (HOST or ICE) is dispatched (allocated a task slice), it can exe­
cute one simple command, emulate one instruction in single-step mode, or enter
real-time emulation. At the completion of any of these actions the process calls the
dispatcher to allocate the next task slice. When the parser is dispatched, it issues a
prompt and waits for a final cr. When the parser encounters a final cr, its action is
completed and it calls the dispatcher to dispatch the next task. The dispatcher is also
called after a parsing or execution error.

Current Process
At the time the dispatcher is called, the current process is the process (HOST, PRI,
or PR2) most recently dispatched. The "value" of current process is not changed by
any actions external to the dispatcher.

The dispatcher uses current process in two ways:

• As a marker indicating where the dispatching sequence left off, so that the
dispatcher can check for a LOCK condition.

Multi-ICE

Multi-ICE Multi-ICE Theory of Operation

• As a moveable pointer into the first three rows of the dispatch table. If the
current process is not LOCKed and the parser is not READY, the dispatcher
continues its poll with the next process in its polling sequence for processes; we
shall examine that sequence in a moment.

Current Process LOCKed

The Dispatcher first checks to see if the current process is LOCKed; a process is
locked when it is executing commands in a LOCK command block. The exact syntax
of the LOCK command is given in chapter 5. Its effect on the dispatcher is easy to
describe: if the locked current process is READY, it is dispatched; if it is NOT
READY (that is, emulating), the dispatcher loops back to begin checking for inter­
rupts again. Thus, no other processes can be dispatched until the END of the lock
command block is reached. If the locked process is emulating, nothing can occur un­
til either that process breaks emulation or the user presses the ESC key. Pressing the
spacebar has no effect, since the LOCK condition is checked before the parser can
be dispatched (figure 9-6).

If the 'current process is not locked, the dispatcher proceeds to check the parser.

Parser READY

If the parser is READY when polled by the dispatcher, the parser is dispatched. If
the parser is NOT READY, the dispatcher proceeds to check the three execution
processes.

Polling Sequence for Processes

The dispatcher polls the three processes in a fixed sequence, diagramed in figure 9-7.
For any given current process, the "next process" is defined as shown in table 9-8.

Table 9-8. Current Process and Next Process

If the current Then the next
process Is: process Is:

HOST process PR1
PR1 PR2
PR2 HOST process

Current Process READY
The dispatcher first updates current process as a pointer into the dispatch table; the
process that was the next process becomes the current process. The dispatcher then
looks at the dispatch table entry corresponding to that current process. If the current
process is READY, it is dispatched. If the current process is NOT READY, the
dispatcher updates the current process again (next process becomes current process)
and repeats the READY test. If the process that is now the current process is
READY, it is dispatched. If the current process is NOT READY, the dispatcher
again updates the current process to point to the remaining process (the first two
were NOT READY). If this process is READY, it is dispatched. If it is NOT
READY (that is, no processes were READY) current process is updated once more,
so that it now points to the process that was the current process when the dispatcher
was called. Thus if no process is READY, current process in effect remains
unchanged.

If nothing was dispatched, the dispatcher jumps back and begins checking for inter­
rupts again.

9-19

Multi-ICE Theory of Operation

9-20

HOST
PROCESS

PR2 PR1

782-13
Figure 9-7. Polling Sequence for Processes

Summary
Dual-ICE operation involves the simultaneous testing of many conditions, as shown
in the several status tables presented thus far. Rather than restating these conditions,
we can summarize the main effects as follows (neglecting interrupts and LOCK for
simplicity):

1. When no process is emulating or executing, the prompt is issued.

2. When only one process is executing, it receives every available task slice and,
except for a slight delay for the dispatcher, behaves like a standard single ICE.
When the process runs out of commands it stops and the system issues a
prompt.

3. When one process is emulating, the system waits for emulation to break, again
like a standard single ICE.

4. A process can be pre-empted after it enters real-time emulation so that another
task can be dispatched.

5. Two different processes can emulate simultaneously (parallel emulation) if they
are using different sets of hardware.

6. Two or more processes can have tasks to execute. Each process executes one
action as it is assigned a task slice; after each action is completed, the next pro­
cess in the sequence is assigned the next task slice.

Multi-ICE

APPENDIX A
SUMMARY OF MULTI-ICE COMMANDS

AND KEYWORDS

This appendix contains a summary of the syntax of expressions in multi-ICE, the
syntax of each of the commands, and an alphabetical list of all multi-ICE keywords.

Expressions
expression == operand [binary-operator operand] ...

operand == primary 1 (expression 1 process-status process I
unary-operator operand 1 (operand) 1
environment-control primary 1
environment-control (expression)

primary == numeric-constant 1 string-constant 1
symbolic-reference 1 statement reference 1
keyword-reference

binary-operator == + 1 - 1 * 1 MOD 1 MASK 1 = I> 13/4 1<> 1
> = I < = 1 AN D 1 OR I XOR

unary-operator == + 1 - 1 BYTE IIBYTE I CBYTE 1 DBYTE I XBYTE I
WORD IIWORD 1 NOT

process-status == ACTIVE I DORMANT I SUSPENDED I

process == HOST 1 PR1 1 PR2

environment-contro/ == EN1 1 EN2

Commands

1. Multi-ICE Commands

lAo Host-only (outside ACTIVATE block)

ACTIVATE PRn cr
[command cr] ...

ENDACTIVATE
BREAK ALL
BREAK PAn
CONTINUE ALL
CONTINUE PRn
KILL ALL
KILL PRn
SUSPENDALL
SUSPEND PRn
SWITCH = ENn
WAIT ANY
WAITPRn

A-I

Summary of Multi-ICE Keywords and Commands

A-2

lB. ICE-only (inside ACTIVATE block)

KILL
SUSPEND

I C. Any process

LOCK
[commandcr] ...

ENDLOCK
SWITCH

2. Single-ICE commands, any process

2A. Block commands

REPEATcr

[
command cr J
U NTI L boolean-expression cr
WHILE boolean-expression cr

ENDREPEAT

COUNT count cr

[
command cr]
UNTILboole. an-expression cr
WHILE boolean-expression cr

ENDCOUNT

IF boolean-expression [THEN] cr
[commandcr] ...

[
ORIF boolean-expression [THEN] cr]
[commandcr] ...

[
ELSEcr]
[command cr] ...

ENDIF
2B. Macro commands

DEFINE MACRO macro-name
[command cr] ...

EM

:macro-name

MACRO macro-name (macro-list?)

DIRECTORY MACRO

REMOVE MACRO [macro-list]

PUT :drive:filename MACRO [macro-list]

INCLUDE :drive:filename
2C. Display Commands

ENABLE SYMBOLIC

DISABLE SYMBOLIC

EVALUATE expression SYMBOLIC

Multi~ICE

Multi-ICE Summary of Multi-ICE Keywords and Commands

BOOl boolean-expression

[:~~~~sSion J [, ... J
BOOl boolean expression

WRITE

[
keYWOrd-referenCe] []
con fen f ... expression J •••

2D. IND Symbol-Table Commands

DEFINE IND .symbol-name = address I value

IN 0 .symbol-name

SYMBOllND

REMOVE IND .symbol-name

REMOVE SYMBOL INO

3. ICE-85-0nly Commands and Keywords

SEARCH .rOOUBLE] partition [WITH MASK mask-value] FOR target-value
LSINGLE

3A. Commands

DOMAIN

DOMAIN = .. module-name

RESET DOMAIN

NESTING

LINES

MODULES

REMOVE MODULES

3B. Keywords

FLAG

LIMIT

lOWER

A-3

Summary of Multi-ICE Keywords and Commands Multi-ICE

Keywords

Any keyword can be abbreviated to its first three characters.

ACTIVATE LEVEL
ACTIVE LIMIT %
ALL LINES =
AND LOCK >
ANY LOWER <

>=
BOOL MACRO <=
BREAK MASK <>

MOD
CONTINUE MODULES
COUNT

NESTING
DEFINE NOT
DIRECTORY
DOMAIN OR
DORMANT ORIF
DOUBLE

PR1
EDGE PR2
ELSE PUT
ENDACTIVATE
ENDCOUNT REMOVE
ENDIF REPEAT
ENDLOCK
ENDREPEAT SEARCH
EN1 SINGLE
EN2 SUSPEND

SUSPENDED
FOR SWITCH

SYMBOLIC
HOST

UNTIL
IF
INCLUDE WAIT
IND WHILE

KILL XOR

A-4

APPENDIX B
INSTALLATION PROCEDURES FOR

INTELLEC SERIES II SYSTEMS

This appendix contains procedures for installing two ICE hardware modules
(lCE-85, ICE-49, or ICE-4lA) in one Intellec Series II Microcomputer Development
Systems, Models 220 and 230.

NOTE
To install dual-ICE in an Intellec MDS-800 system, follow the pro­
cedures for each ICE given in the standard ICE manual for that product.
The MDS-800 chassis has enough extra slots for the two pairs of circuit
boards.

The procedure for Intellec Models 220 and 230 is as follows:

1. Install expansion chassis following procedure in the Intellec Series II
Installation and Service Manual. Do not replace the front panels yet.

2. Figure B-1 shows the recommended locations for the two ICEs (two boards for
each ICE) in a Model 220 or 230 system. One ICE module is in the main chassis
and the other is in the expander chassis. Both occupy the middle two slots so
that the flat ribbon cables can fit inside the chassis with the front cover installed.

3. Set the device codes on the two ICE controller boards to identify PRI and PR2.
Table B-1 shows the device codes to use for various combinations of ICEs. The
ICE with the lower numbered device code is PRI in all combinations.

Table B-1. Multi-ICE™ Device Codes

Combination PR1 PR2

85/85 10H 11H

85/49 10H 23H

85/41A 10H 24H

In general, when the two ICEs are different (e.g., 85/49 or 85/4lA) the stan­
dard device code for each ICE should be used. You should verify the device
code settings; refer to the standard ICE manuals for details.

4. The multi-ICE package includes three replacement PROMs for one IGE-85
Controller Board. Install the three PROMs as shown in table B-2. Do not
replace the PROM in socket All.

Table B-2. ICE-85™ Replacement PROM Locations

Socket Old Part New Part
Number Number Number

A8 9100139 9100229
A9 9100140 9100230
A10 9100141 9100231

B-1

Installation Procedures for Intellec Series II Systems

762-14

B-2

DUAL AUXILIARY
CONNECTOR

220/230 MAIN CHASSIS

EXPANDER CHASSIS

Figure B-1. Intellec® Series II Models 220/230 Dual-ICE™ Installation

Multi-ICE

Multi-ICE

782-15

Installation Procedures for Intellec Series II Systems

NOTE
(Note Deleted)

5. Insert a pair of ICE boards into an iSBC dual auxiliary connector (pIN
1000751). Refer to figure B-2 for a diagram showing the orientation of the two
boards and the locations of the four ribbon cable connectors X, Y, V, and T.

a. For a permanent installation, the dual auxiliary connector can be bolted to
the backplane before installing the ICE boards.

6. Insert the boards and connector into the main chassis, in the middle two slots as
shown in figure B-1.

NOTE
The cable slots at the right side of the main chassis are larger than the
corresponding slots on the expander chassis. Inspect the flat ribbon
cables and install the ICE with the wider cables in the main chassis.

7. Attach the ribbon cables from the cable modules (X to X, V to V, Y to Y, and T
to T) as shown in figure B-3. Hold cables X, V, and Y together with the ribbed
side toward the main chassis. Insert the connectors, then fold the cables to the
right. Guide the ribbon connector with connector T (from the trace module)
around the left end of cable Y and make the connection.

8. Guide the flat cables through the slot at the right side of the main chassis and
replace the front panel on the main chassis.

9. Repeat steps 5 through 9 to install the other ICE in the expander chassis. Curl
the flat cables as necessary to fit the exit slot at the right of the chassis.

10. Apply power to the system, load diskettes, boot ISIS-II, and invoke the
multi-ICE software. The installation is complete.

DUAL AUXILIARY
CONNECTOR

v

Figure B-2. ICE™ Boards in Dual Auxiliary Connector

B-3

Installation Procedures for Intellec Series II Systems

B-4

v

YI_~_- __ ~ __ Ix

teD ®

182-18

'-----x

-----------------v
~-----------------------------------Y
---T

Figure B-3. Ribbon Cable Routing Diagram

Multi-ICE

APPENDIX C
MULTI-ICE ERROR MESSAGES

This appendix contains a listing and explanation of the ICE error messages that are
particular to the commands in this manual or that have a different interpretation
under these commands from that given for the standard ICE commands. Refer to
the standard ICE manuals for explanations of other ICE error messages.

ERR 88: MACRO PARAMETER ERROR

A macro call contained more than ten actual parameters. Enter the command with
ten or fewer actual parameters.

ERR 90: MEMORY OVERFLOW

ICE workspace has expanded to the maximum permitted by the value of LIMIT.
This can happen when the symbol table grows very large and when a macro expan­
sion requires more workspace than that available. The command that produced the
overflow is aborted, but the memory already written in the Intellec by that command
is not restored. Memory below LIMIT is not changed.

ERR 96: INVALID WITHIN ACTIVATE

An ACT IV ATE block may not contain a HOST -only command (W AIT PRn,
WAIT ANY, CONTINUE PRn, CONTINUE ALL, SUSPEND PRn, SUSPEND
ALL, KILL PRn, KILL ALL, BREAK PRn, BREAK ALL), another ACTIVATE
command, a macro definition command, or a SWITCH command that refers to the
other ICE environment (e.g., SWITCH = PR2 inside an ACTIVATE PRI block).
The invalid command is ignored, but the ACTIVATE block is not aborted. Enter
another command.

ERR 9F: PROCESS ALREADY ACTIVE

The process named in an ACTIV ATE command is already executing or emulating a
command list from an ACTIVATE block. The extra ACTIVATE command is ig­
nored. Enter another command, or KILL the active process before entering another
ACTIV ATE command for that process.

ERR A3: PROCESS DORMANT

The process named in a CONTINUE command is DORMANT. The CONTINUE
command is ignored. Enter another command.

ERR A4: MACRO FILE FULL

The temporary file MAC.TMP on the multi-ICE diskette has used all the available
space on that diskette, and there is no room for any more macro definitions. Save
and remove one or more macros to make room for more, using the PUT MACRO
and REMOVE MACRO commands in multi-ICE.

C-l

Error Messages

C-2

ERR AF: ILLEGAL HOST COMMAND

A SUSPEND or CONTINUE command was entered to the HOST process (that is,
not within an ACTIVATE block) that either had no process name or had an
unrecognizable process name following the initial command keyword. The com­
mand is ignored; enter another command.

ERR BO: LIMIT HIGHER THAN UPPER

LIMIT, the lowest address available to the ICE memory manager for expanding ICE
workspace, cannot be set to a higher address than the value of UPPER, the lowest
address currently used by ICE workspace. The command that attempted to change
LIMIT was ignored. Refer to chapter 5, ICE-85 Dependent Commands, for details
on LIMIT and UPPER.

ERR B1: INVALID WITH LOCK ON

A LOCK block may not contain a SUSPEND or WAIT command. The invalid com­
mand was ignored, but the LOCK block is not aborted. Enter another command.

ERR B4: POTENTIAL BUS LOCKOUT

In a dual ICE-85 system both ICE-85's may not be mapped to Intellec memory. Two
ICE-85's emulating (GO FOREVER) from Intellec memory can produce a bus
lockout condition requiring a hardware reset in the Intellec system, unless one of
them can break emulation. This condition can be avoided by mapping at least one
ICE-85 to USER.

WARN C1: MAPPING OVER SYSTEM

Under ICE-85, you are warned when memory mapped to INTELLEC contains ad­
dresses in one of the following areas of memory:

• Monitor (highest block)
• ICE workspace (UPPER points to lowest address in ICE workspace).

• Potential ICE workspace (LIMIT points to the lowest address available for
expanding ICE workspace).

• ICE software (LOWER points to the lowest address in the next free block higher
than the ICE software).

• ISIS-II (the lowest blocks).

Initially, LIMIT = LOWER; any memory mapped to INTELLEC at this time
receives a warning. You can reset LIMIT to the highest address occupied by user
code; if LIMIT is reset before the area is mapped, the warning is not issued. The
warning has no effect on the command.

WARN C2: HARDWARE MISSING

This message is preceded by the device code that Multi-ICE was looking for. This
warning indicates that Multi-ICE cannot communicate with the indicated ICE hard­
ware. Most commonly, the hardware is not installed in the Intellec chassis. Alter­
nately, check the device code setting for the 'missing' ICE (see Appendix B). The
warning is not fatal. The ICE software for the missing ICE can still be run, but of
course no hardware commands can execute.

Multi-ICE

Multi-ICE Error Messages

WARN C3: MULTIPLE HARDWARE

Both ICEs have the same device code setting. Reset the device code setting (see Ap­
pendix B) of one of the ICEs and re-install.

C-3

APPENDIX D
OPERATING HINTS AND LIMITATIONS

This appendix contains suggestions on operating multi-ICE, procedures for backing
up the multi-ICE PROMs, and brief descriptions of known limitations of this
product when compared to standard ICE systems.

1. Perform all LOAD, SAVE, LIST, and MAP commands through the HOST
rather than within ACTIVATE. SWITCH environments as needed.

2. Enter all macro definitions through the HOST. Macros can be called by any
process, and are not limited to the current environment at definition time.

3. While an ICE process is in emulation the HOST can be in interrogate mode in
the same environment. Avoid commands that affect emulation and trace while
in this situation; these commands include those that affect the MAP, the 00-
register, breakpoints, the trace buffer, the program counter, qualifier registers,
code memory, and hardware registers. The result of any of these commands in
this situation will not be useful to you.

4. Backing up Replacement PROMs for Testing

Using an Intel UPP PROM programmer and 2716 personality module attached
to the Intellec system you can transfer the contents of the three replacement
PROMs furnished with multi-ICE to diskette for comparison in case of a
suspected PROM failure.

To ISIS-II enter the command sequence (prompts are furnished by the system):

-UPM
*TYPE*2716
Insert each PROM in the programmer socket in turn, and transfer its contents
with the appropriate transfer command as shown in table 0-1.

Table D-l. PROM Transfer Commands

PROM Installed Transfer Command

9100229 TRANSFER FROM 0 TO 7FFH
9100230 TRANSFER FROM SOOH TO OFFFH
9100231 TRANSFER FROM 1000H TO 17FFH

Finally, enter the command:

*WRITE FILE :F1 :85 PROM.BAK FROM 0 TO 17FFH HEX

This completes the backup procedure. To make the comparison test, enter the
command:

*READ FILE :F1:85PROM.BAK INTO 0

Inserteach PROM in the programmer socket in turn, and compare its contents
with the backup as shown in table 0-2.

Table D-2. PROM Compare Commands
PROM Installed Compare Command

9100229 COMPARE FROM 0 TO 7FFH
9100230 COMPARE FROM SOOH TO OFFFH
9100231 COMPARE FROM 1000H TO 17FFH

D-l

Operating Hints and Limitations

D-2

This completes the comparison procedure.

5. Under ICE-85, use of the monitor routines CO and CI for console display from
within user code interferes· with Multi-ICE's interrupt handling routines. Thus,
you should no map 1/0 to the IntelJec system.

Instead, use the WRITE command to have ICE produce simulated output
whenever a display is required.

6. Under ICE-85, the EXECUTE command is omitted in Multi-ICE. Use the
INCLUDE command instead.

7. Under ICE-85, the performance characteristics of the SYI line do not allow you
to synchronize trace collection between two ICEs.

8. Under ICE-85, the replacement PROMs furnished with Multi-ICE change the
performance of SYO OUT by adding two control keywords, EDGE and
LEVEL. The syntax of the ENABLE SYO OUT command becomes:

ENABLE SYO OUT [E. DGE]
LEVEL

LEVEL is the default, and is the performance condition for the standard
ICE-85. Under this condition, SYO goes from high to low within 1.3-2.3 ms
after a breakpoint register matches.

When EDGE is specified, the SYO line goes from high to low within 30-200 lAs
after a breakpoint match, stays low for a brief period, returns high to finish the
last instruction (and some internal 'bookkeeping'), then goes low and stays low.
EDGE is useful when the external device to be controlled by SYO OUT is edge­
triggered, or when you wish to have a faster response than LEVEL can give.
Specifically, EDGE should be used when the external device is another ICE; the
external ICE halts emulation immediately on receiving the first high-to-Iow
edg~. (That is, halts 30-200 lAS after the sending ICE has halted emulation.)

When SYO is used to control the start of emulation, emulation begins approx­
imately 800 lAs after SYO goes high. This brief delay is characteristic of both the
sending ICE and the receiving ICE; thus, SYO does not produce a simultaneous
start of emulation by two ICEs.

When SYO out is enabled in the sending ICE-85, a reference using BYTE,
WORD, or PORT, or a single STEP emulation produces a momentary pulse on
SYO OUT. If the receiving ICE has SYO IN enabled, it will start emulation then
halt on the first falling edge.

With SYO OUT enabled, a RESET HARDWARE command by the sending
ICE-85 causes SYO to go high and remain high for 1.8 seconds.

9. Under ICE-85, the CAUSE command does not give the correct cause of
breaking emulation.

10. If the Multi-ICE software is invoked from a SUBMIT file under ISIS-II V3.4,
the control E feature for switching input between the console and the SUBMIT
file is not fully supported.

11. ICE-85 containing Multi-ICE firmware now supports a Hold/Hold
Acknowledge protocol while not in emulation. The EMUL (active HIG H) signal
provided in the buffer assembly indicates when the Hold/Hold Acknowledge
protocol is fully supported. When EMUL is false (LOW), ICE-85 may not res­
pond to a Hold Request with a Hold Acknowledge for up to 1 msec. Thus, if
ICE-85 requires the use of the user system bus to retrieve or restore emulation
data, it sets EMUL low indicating that the Hold/Hold Acknowledge protocol is
not fully supports.

12. Under ICE-85, the operations of the EMUL output differs from the standard
ICE-85 output. In the standard ICE-85 EMUL indicates emulation in progress,
while in Multi-ICE-85 EMUL indicates that ICE-85 does not have control of the
user system bus.

Multi-ICE

ACTIVATE command, 2-5, 2-6, 2-7, 6-1,
6-2 to 6-4,6-5,9-12

ACTIVATE list
See Command list

ACTIVE status, 6-3, 9-3, 9-9, 9-10,
9-11,9-12

ALL keyword, 2-5; (see SUSPEND, KILL,
CONTINUE, and BREAK commands)

AND operator, 3-5,3-7
ANY keyword

See WAIT command
Arithmetic operators, 3-4, 3-5, 3-6

Binary Operators, 3-4, 3-6, 3-11 ff
BOOL command, 4-1,4-25,9-3
Boolean expression, 3-16, 3-17
BREAK command, 8-1, 8-2,9-12,9-13,

9-14

Classes of operators, 3-4, 3-5, 3-6
Command buffer, 9-1,9-2,9-5,9-10
Command code buffer

See Command buffer
Command contexts, 3-16, 3-17
Command list, 9-2, 9-11, 9-12, 9-13
Compound commands, 4-1, 9-6
Console interrupts, 9-16, 9-17
Content-operator, 3-5, 3-6, 3-7
CONTINUE commands, 7-2, 7-3, 7-4,9-14
COUNT command, 4-1, 4-5 to 4-8
CTRLQ,9-17
CTRLS, 9-17
Current process, 9-18 to 9-20
Current SWITCH, see Environment

DEFINE MACRO command, 4-12, 4-14 to
4-16

Direct references, 3-3, 3-4
Dispatcher, 9-14 to 9-20
Dispatch table, 9-16
Display macro command, 4-1, 4-13, 4-18,

4-19
Display macro directory command, 4-1,

4-13,4-19
DOMAIN commands, 5-1, 5-3
DORMANT status, 6-3, 6-5, 9-3, 9-9, 9-11,

9-12
DOUBLE

See SEARCH command

EDGE keyword, D-2
ENl,EN2

See Environment
Environment, 2-5, 6-1, 6-3, 6-4,9-1,9-3,

9-4,9-11
Environment controls, 3-8, 6-4
Error messages, C-l to C-3
ESC key, 2-7, 6-3, 6-5, 9-9, 9-17

INDEX

Evaluating expressions, 3-9 to 3-16
Execution process, 9-2
Expression, 3-1

FLAG keyword, 5-4

Hardware interrupts, 9-16, 9-17, 9-18
HOST execution process

See HOST process
HOST-only commands, 1-3,9,.8
HOST parser, 9-1, 9-3, 9-5 to 9-8,9-15,

9-16,9-19
HOST process, 2-5, 2-6, 6-3 to ~-6, 9-1,9-2,

9-3,9-8 to 9-11, 9-19, 9-20

ICE-independent commands, 4-1, 9-8, 9-11
ICE process, 2-5, 6-3, 6-4, 6-5, 9-2, 9-3,

9-11 to 9-14,9-18,9-19,9-20
IF command, 4-1, 4-8 to 4-10
INCLUDE command, 4-1, 4-14, 4-20
IND symbol commands, 4-1, 4-27
Installation, 2-1,2-2,2-5, Appendix B
Intermediate carriage return, 9-6
Invoking ICE software, 1-1, 2-5

Keyword reference, 3-3
KILL commands, 2-5, 2-7, 2-8, 6-2, 6-5,

9-11,9-12,9-13

LEVEL keyword, D-2
LIMIT keyword, 5-4 to 5-8
LINES command, 5-3
Local and global defaults, 4-1, 4-2
LOCK command, 8-1, 8-2, 8-3, 9-15, 9-16,

9-19
LOCKED status, 9-15, 9-16,9-19
Logical operators, 3-5, 3-6, 3-7, 3-8
LOWER keyword, 5-4 to 5-8

Macro call command, 4-1, 4-12, 4-14ff
MACRO command (display macro), 4-1,

4-13,4-18 to 4-19
Macro commands, 4-11 to 4-25
Macro invocation, see Macro call

command
MASK operator, 3-5, 3-6
Messages, 6-6
MOD operator, 3-5,3-6
MODULES command, 5-4
Multiple displays, 4-1, 4-27

NESTING command, 5-3
Nesting compound commands, 4-10, 4-11
NOT operator, 3-5, 3-7
NOT READY

See Task Status
Numbers, 3-1
Numeric constants, 3-2
Numeric expression, 3-16, 3-17

Index-l

Operands, 3-1
Operators, 3-4 to 3-8, 3-9
OR operator, 3-5,3-8

Parsing and execution environment
See Environment

Parser
See HOST parser

PRl, PR2
See ICE process

Precedence of operators, 3-4, 3-5, 3-6, 3-9
to 3-16

Primaries, 3-1
Process references, 3-4
Process status, 3-4,6-3,9-3,9-9,9-10,9-11

to 9-14
PROGI (sample user program), 2-1, 2-2,

2-3,2-6
PROG2, 2-1, 2-4, 2-6, 2-8
Prompt, 9-5; see HOST parser
PUT macro command, 4-1, 4-14, 4-20

READY
See Task status

Relational operators, 3-5, 3-6, 3-7
REMOVE MACRO command, 4-1, 4-13,

4-18,4-19
REMOVE MODULE command, 5-4

Index-2

REPEAT command, 4-1, 4-2 to 4-5
Replacement PROMs, 1-1, B-1, D-l

SEARCH command, 5-1 to 5-3
SINGLE

See SEARCH command
Spacebar, 2-7, 6-4, 9-5, 9-16, 9-17
Statement-number references, 3-4, 4-28
String constants, 3-2, 3-3
SUSPEND command, 7-1, 7-3,7-4,9-11,

9-12,9-13, 9-14
SUSPENDED status, 7-1, 7-2, 7-3,9-3,

9-11,9-12, 9-13, 9-14
SWITCH commands, 2-5, 6-1, 6-3, 6-4, 6-5
Symbolic displays, 4-1, 4-28, 4-29
Symbolic references, 3-3, 4-27, 4-28

Tasks, 9-4,9-14,9-18
Task-slice, 9-4, 9-14, 9-15, 9-18 to 9-20
Task status, 9-4, 9-6, 9-7, 9-8, 9-9,9-10 to

9-14,9-19

Unary operators, 3-4, 3-6, 3-11ff

WAIT command, 7-2, 7-3,7-4,9-10,9-11
WRITE command, 4-1, 4-26, 4-27

XOR operator, 3-5,3-6,3-8

Multi-ICETM Operating Instructions for ISIS-II
980(

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that
the needs of all Intel product users. This form lets you participate directly in the documentation proce

Please restrict your comments to the usability, accuracy, readability, organization, and completene
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestior
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other typ
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ ___ DATE ______________ _
TITLE __ __

COMPANYNAME/DEPARTMENT __ _
ADDRESS __ _

CITY ______________________ _ STATE ____________ _ ZIP CODE __________ _

Please check here if you require a written reply. 0

LIKE YOUR COMMENTS .•.

ocument is one of a series describing Intel products. Your comments on the back of this form will
IS produce better manuals. Each reply will be carefully reviewed by the responsible person. All
ents and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

