

TIMER ROUTINES

$subtitle('Initialize_Time')
1*** ********************
* init time *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

This procedure sets the timer to zero and creates a task to
maintain the timer and a region to ensure exclusive
access to the timer. This procedure must be called
before the first time that get_time or set_time is
called. Also, this procedure should be called only once.
To ensure this, call init_time from your initialization task.

The timer task will run in the job from which this
procedure is called.

If your application experiences many interrupts,
the timer may run slow. You can rectify this
problem by raising the priority of the timer
task. To do this, change the 128 in the
rq$create$task system call to a smaller number.
This change may slow the processing of your
interrupts.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

** *******************1
init_time: PROCEDURE(ret_status_p) REENTRANT PUBLIC;
DECLARE ret_status_p POINTER,

ret status BASED ret_status_p WORD,
timer task t
local status

time_in_sec = 0;

TASK,
WORD;

time_region = rq$create$region 1* Create a region. *1
(PRIORITY_QUEUE, ret_status_p);

IF (ret status <> E$OK) THEN
RETURN;
data_seg_p

timer task t = rq$create$task
(128,
@maintain_time,
data_seg_p_o.base,
0,
512,
0,
ret_status_p) ;

IF (ret_status <> E$OK) THEN
CALL rq$delete$region

(time_region, @local_status);

END init_time;
END timer;

Programming Techniques

1* Return with error. *1
1* Get contents of

DS register. *1
1* Create timer task. *1
1* priority *1
1* start addr *1
1* data seg base *1
1* stack ptr *1
1* stack size *1
1* task flags *1

1* Since could not *1
1* create task, *1
1* must delete *1
1* region. *1

3-7

ASSEMBLY LANGUAGE SYSTEM CALLS 4
4.1 INTRODUCTION

You should read this chapter if you will be using iRMX I system calls from programs
written in ASM86 assembly language. You should be familiar with the following concepts:

• iRMX I system calls

• iRMX I interface procedures (see Chapter 2)

• PL/M-86 size controls (see Chapter 1)

You should also be familiar with PL/M-86 and fluent in ASM86 assembly language.

This chapter first outlines the process for using an iRMX I system call from an assembly
language program. It then directs you to other Intel manuals that provide either
background information or details about interlanguage procedure calls.

4.2 CALLING THE SYSTEM

Programs communicate with the iRMX I Operating System by calling interface procedures
designed for use with programs written in PL/M-86. So the problem of using system calls
from assembly language programs becomes the problem of making your assembly language
programs obey the procedure-calling protocol used by PL/M-86. For example, if your
ASM86 program uses the SEND$MESSAGE system call, then you must call the
rq$send$message interface procedure from your assembly language code.

NOTE

You can read about the techniques for calling PL/M-86 procedures from
assembly language in the manual ASM86 Macro Asselnbler Operating
Instructions for 8086-Based Development Systen'ls.

Programming Techniques 4-1

ASSEMBLY LANGUAGE SYSTEM CALLS

4.3 SELECTING A SIZE CONTROL

4-2

Before writing assembly language routines that call PL/M-86 interface procedures, you
must select a size control (COMPACT, MEDIUM, or LARGE) because conventions for
making calls depend on the model of segmentation.

If you write your entire application in assembly language, you can arbitrarily select a size
control and use the libraries for the selected control. However, you can obtain a size and
performance advantage by using the COMPACT interface procedures, since their
procedure calls are all NEAR. The LARGE interface, which has procedures that require
FAR procedure calls, is only helpful if your application code is larger than 64K bytes.

On the other hand, if you write some of your application code in PL/M-86, your assembly
language code should use the same interface procedures as those used by your PL/M -86
code.

Programming Techniques

COMMUNICATION BETWEEN iRMX® I JOBS 5
5.1 INTRODUCTION

You should read this chapter if you want to pass information from one iRMX I job to
another. You should be familiar with the following concepts:

• iRMX I jobs, including object directories

• iRMX I tasks

• iRMX I segments

• The root job of an iRMX I -based system

• iRMX I mailboxes

• iRMX I physical files or named filesfiles:named

• iRMX I stream filesfiles:stream

• iRMX I type managers and composite objects

In multiprogramming systems, where each of several applications is implemented as a
distinct iRMX I job, there is an occasional need to pass information from one job to
another. This chapter describes several techniques that you can use to do this.

The techniques are divided into two groups. The first group deals with passing large
amounts of information from one job to another. The second group deals with passing
iRMX I objects.

Programming Techniques 5-1

COMMUNICATION BETWEEN iRMX® I JOBS

5.2 PASSING LARGE AMOUNTS OF DATA BETWEEN JOBS

5-2

There are three methods for sending large amounts of information from one job to
another:

1. You can create an iRMX I segment and place the information in the segment. Then,
using one of the techniques discussed below for passing objects between jobs, you can
deliver the segment.

The advantages of this technique are

• Since this technique requires only the Nucleus, you can use it in systems that do not
use other iRMX I subsystems.

• The iRMX I Operating System does not copy the information from one place to
another.

The disadvantages of this technique are

• The segment will occupy memory until it is deleted, either explicitly (by the
DELETE$SEGMENT system call), or implicitly (when the job that created the
segment is deleted). Until the segment is deleted, a substantial amount of memory
is unavailable for use elsewhere in the system.

• The application code may have to copy the information into the segment.

2. You can use an iRMX I stream file.

The advantages of this technique are

• The data need not be broken into records.

• This technique can easily be changed to Technique 3 (below).

The disadvantage of this technique is that you must configure one or both I/O systems
into your application system.

3. You can use either the Extended or the Basic I/O System to write the information onto
a mass storage device, from which the job needing the information can read it.

The advantages of this technique are

• Many jobs can read the information.

• This technique can easily be changed to Technique 2 (above).

• The information need not be divided into records.

The disadvantages of this technique are

• You must incorporate one or both I/O systems into your application system.

• Device I/O is slower than reading and writing to a stream file.

Programming Techniques

COMMUNICATION BETWEEN iRMX® I JOBS

5.3 PASSING OBJECTS BETWEEN JOBS

Jobs can also communicate with each other by sending objects across job boundaries. You
can use any of several techniques to accomplish this, but you should avoid using one
seemingly straightforward technique. In the following discussions you will see how to pass
objects by using object directories, mailboxes, and parameter objects. You will also see why
you should not pass object tokens by embedding them in an iRMX I segment or in a fixed
memory location.

Although you can pass any object from one job to another, there is a restriction applying to
connection objects. When a file connection created in one job (Job A) is passed to a
second job (Job B), the second job (Job B) cannot successfully use the object to do I/O.
Instead, the second job (Job B) must create another connection to the same file. The
iRMX® Basic I/O System User's Guide and the iRMX® Extended I/O System User's Guide
describe this restriction.

5.3.1 Passing Objects Through Object Directories

Consider a hypothetical system in which tasks in separate jobs must communicate with
each other. Specifically, suppose that Task B in Job B must not begin or resume running
until Task A in Job A grants permission.

One way to do this synchronization is to use a semaphore. Task B can repeatedly wait at
the semaphore until it receives a unit, and Task A can send a unit to the semaphore
whenever it wishes to grant permission for Task B to run. If Tasks A and B were within the
same job, this would be a straightforward use of a semaphore. However, the two tasks are
in different jobs, and this causes some complications.

Specifically, how do Tasks A and B access the same semaphore? For instance, Task A can
create the semaphore and access it, but how can Task A provide Task B with a token for
the semaphore? The solution is to use the object directory of the root job.

In the following explanation, each of the two tasks must do half of a protocol. The process
of creating and cataloging the semaphore is one half, and the process of looking up the
semaphore is the other.

For this protocol to succeed, the programmers of the two tasks must agree on a name for
the semaphore, and they must agree which task does which half of the protocol. In this
example, the semaphore is named permitsem. Because Task B must wait until Task A
grants permission, Task A will create and catalog the semaphore, and Task B will look it
up.

Task A does the creating and cataloging as follows:

1. Task A creates a semaphore with no units by calling the CREATE$SEMAPHORE
system call. This provides Task A with a token for the semaphore.

Programming Techniques 5-3

COMMUNICATION BETWEEN iRMX® I JOBS

5-4

2. Task A calls the GET$TASK$TOKENS system call to obtain a token for the root job.

3. Task A calls the CATALOG$OBJECT system call to place a token for the semaphore
in the object directory of the root job under the name permitsem.

4. Task A continues processing, eventually becomes ready to grant permission, and sends
a unit to permitsem.

Task B does the look-up protocol as follows:

1. Task B calls the GET$TASK$TOKENS system call to obtain a token for the root job.

2. Task B calls the LOOKUP$OBJECT system call to obtain a token for the object
named permitsem. If the name has not yet been cataloged, Task B waits until it is.

3. Task B calls the RECEIVE$UNITS system call to request a unit from the semaphore.
If the unit is not available, Task A has not yet granted permission and Task B waits.
When a unit is available, Task A has granted permission and Task B becomes ready.

You should be aware of several aspects of this technique:

• In the example, the object directory technique was used to pass a semaphore. You
can use the same technique to pass any type of iRMX I object.

• The semaphore was passed via the object directory of the root job. The root job's
object directory is unique because it is the only object directory to which all jobs in
the system can gain access. This accessibility allows one job to "broadcast" an object
to any job that knows the name under which the object is catalogued.

• The object directory of the root job must be large enough to accommodate the
names of all the objects passed in this manner. If it is not, it will become full and
the iRMX I Operating System will return an exception code when attempts are
made to catalogue additional objects.

• If you use this technique to pass many objects, you could have problems ensuring
unique names. To avoid this, use an object directory instead of the root job
directory for different sets of jobs. To do this, have one of the jobs catalogue itself
in the root job's object directory under a previously set name. The other jobs can
then look up the catalogued job and use its object directory rather than that of the
root job.

• In the example, the object-passing protocol was divided into two halves: the
create-and-catalogue half and the look-up half. The protocol works correctly
regardless of which half runs first.

Programming Techniques

COMMUNICATION BETWEEN iRMX® I JOBS

5.3.2 Passing Objects Through Mailboxes

You can also send objects from one job to another using a mailbox. This ,is a two-step
process in that the two jobs using the mailbox must first use the object directory technique
to obtain mutual access to the mailbox, and then they use the mailbox to pass additional
objects.

5.3.3 Passing Parameter Objects

One of the parameters of the CREA TE$JOB system call is a parameter object. This
parameter allows a task in the parent job to pass an object to the newly created job. Once
the tasks in the new job begin running, they can obtain a token for the parameter object by
calling GET$TASK$TOKENS. The following example illustrates this technique:

Suppose that Task 1 in Job 1 is responsible for spawning a new job (Job 2). Suppose also
that Task 1 maintains an array needed by Job 2. Task 1 can pass the array to Job 2 by
putting the array into an iRMX I segment and designating the segment as the parameter
object in the CREATE$JOB system call. Then the tasks of Job 2 can call the
GET$TASK$TOKENS system call to obtain a token for the segment.

In the example, the parameter object is a segment. However, you can use this technique to
pass any kind of iRMX I object.

5.3.4 Avoid Passing Objects Through Segments or Fixed
Memory Locations

In the current version of the iRMX I Operating System, tokens remain unchanged when
objects are passed from job to job. However, Intel reserves the right to modify this rule. If
you pass objects from one job to another and you want your software to be able to run on
future releases of the iRMX I Operating System, follow these guidelines:

• Never pass a token from one job to another by placing the token in an iRMX I segment
and then passing the segment.

• Never pass a token from one job to another by placing the token in any memory
location that both jobs access.

Programming Techniques 5-5

COMMUNICATION BETWEEN iRMX® I JOBS

5.3.5 Comparison of Object-Passing Techniques

5-6

Consider these guidelines when deciding how to pass an object between jobs:

• If you are passing only one object from a parent job to a child job, use the parameter
object when the parent creates the child.

• If you are passing only one object but not from parent to child, use the object directory
technique. It is simpler than using a mailbox.

• If you need to pass more than one object at a time, you can use any of the following
techniques:

Assign an order to the objects and send them to a mailbox where the receiving job
can pick them up in order.

Give each of the objects a name and use an object directory.

Write a simple type manager that packs and unpacks a set of objects. Then pass
the set of objects as one composite object.

Programming Techniques

DEADLOCK AND
DYNAMIC MEMORY ALLOCATION 6

6.1 INTRODUCTION

You should read this chapter if you write tasks that dynamically allocate memory, send
messages, create objects, or delete objects. You should be familiar with the following
concepts:

• Memory management in the iRMX I Operating System

• Using either iRMX I semaphores or regions to obtain mutual exclusion

Memory deadlock is not hard to diagnose or correct but it is difficult to detect. Because
memory deadlock often occurs under unusual circumstances, it can lie dormant throughout
development and testing, only to bite you when your back is turned. This chapter provides
some special techniques to help prevent memory deadlock.

6.2 HOW MEMORY ALLOCATION CAUSES DEADLOCK

The following example illustrates the concept of memory deadlock and shows the danger
that iRMX I tasks can face when they allocate memory dynamically.

Suppose that the following circumstances exist for Tasks A and B, which belong to the
same job:

• Task A has lower priority than Task B.

• Each task wants two iRMX I segments of a given size, and each asks for the segments
by calling CREATE$SEGMENT repeatedly until both segments are acquired.

• The job's memory pool contains only enough memory to satisfy two of the requests.

• Task B is asleep and Task A is running.

Now suppose that the following events occur in the order listed:

1. Task A gets its first segment.

Programming Techniques 6-1

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

6-2

2. An interrupt occurs and Task B wakes up. Since Task B has higher priority than Task
A, Task B becomes the running task.

3. Task B gets its first segment.

The two tasks are now deadlocked. Task B remains running and continues to ask for its
second segment. Not only are both of the tasks unable to progress, but Task B is
consuming a great deal, perhaps all, of the processor time. At best, the system is seriously
degraded.

This deadlock problem does not usually occur during debugging because the order of
events is critical. Note that the key event in the deadlock example is the awakening of Task
B just after Task A invokes the first CREA TE$SEG MENT system call, but just before
Task A invokes the second CREA TE$SEGMENT call. Because this critical sequence of
events occurs only rarely, a "thoroughly debugged" system might, after a period of flawless
performance, suddenly fail.

Such intermittent failures are costly to deal with once your product is in the field. Thus,
the most economical method for dealing with memory deadlock is to prevent it.

Programming Techniques

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

6.3 SYSTEM CALLS THAT CAN LEAD TO DEADLOCK

A task cannot cause memory deadlock unless it dynamically allocates memory. Tasks
allocate memory only by using system calls. If your task uses any of the following system
calls, you must take care to prevent deadlock:

• Any system call that creates an object

• Any system call belonging to a subsystem other than the Nucleus

• SEND$MESSAGE

• DELETE$JOB

• DELETE$EXTENSION

If a task uses none of the preceding system calls, it cannot deadlock as a result of memory
allocation.

Programming Techniques 6-3

DEADLOCK AND DYNAMIC MEMORY ALLOCATION

6.4 PREVENTING MEMORY DEADLOCK

6-4

Using one of the following techniques will eliminate memory deadlock from your system:

• When a task receives an E$MEM condition code, the task should not endlessly repeat
the system call that led to the code. Rather, it should repeat the call only a
predetermined number of times. If the task still receives the E$MEM condition, it
should delete all its unused objects and try again. If the E$MEM code is still received,
the task should sleep for a while and then reissue the system call.

• If you have designed your system so a job cannot borrow memory from the pool of its
parent, you can use an iRMX I semaphore or region to govern access to the memory
pool. Then, when a task requires memory, it must first gain exclusive access to the job's
memory pool. Only after obtaining this access may the task issue any of the system
calls listed above.

The task's behavior should then depend on whether the system can satisfy all the task's
memory requirements:

If the system cannot satisfy all requirements, the task should delete any objects that
were created and surrender the exclusive access. Then the task should again
request exclusive access to the pool.

If, on the other hand, all requests are satisfied, the task should surrender exclusive
access and begin using the objects.

This technique prevents deadlock by returning unused memory to the memory pool,
where another task may use it.

• If you have designed your system so a job cannot borrow memory from the pool of its
parent, prevent the tasks within the job from directly competing for the memory in the
job's pool. You can do this by allowing no more than one task in each job to use the
system calls listed earlier.

Programming Techniques

GUIDELINES FOR STACK SIZES 7
7.1 INTRODUCTION

This chapter is for three kinds of readers:

• Those who write tasks that create iRMX I jobs or tasks.

• Those who write interrupt handlers.

• Those who write tasks to be loaded by the Application Loader or tasks to be invoked by
the Human Interface.

You should be familiar with the iRMX I Debugger, and you should know which system
calls the various subsystems of the iRMX I Operating System provide. You also should
know the difference between maskable and nonmaskable interrupts.

This chapter will help you compute how much stack you must specify in the system call that
creates a job or task. If you are writing an interrupt handler, this chapter informs you of
stack size limitations to which you must adhere. If you are writing a task to be loaded by
the Application Loader or invoked by the Human Interface, this chapter shows you how
much stack to reserve during the linking and locating process.

Programming Techniques 7-1

GUIDELINES FOR STACK SIZES

7.2 STACK SIZE LIMITATION FOR INTERRUPT HANDLERS

Many tasks running in the iRMX I Operating System are subject to two kinds of interrupts:
maskable and nonmaskable. When these interrupts occur, the associated interrupt
handlers use the stack of the interrupted task. As a result, you must know how much of
your task's stack to reserve for these interrupt handlers.

The iRMX I Operating System assumes that all interrupt handlers, including those that you
write, require no more than 128 (decimal) bytes of stack, even if a task is interrupted by
both a maskable and a nonmaskable interrupt. If when writing an interrupt handler you
fail to adhere to this limitation, you risk stack overflow in your system.

To stay within the 128 (decimal) byte limitation, you must restrict the number of local
variables that the interrupt handler stores on the stack. For interrupt handlers serving
maskable interrupts, you may use as many as 20 (decimal) bytes of stack for local variables.
For handlers serving the nonmaskable interrupt, you may use no more than 10 (decimal)
bytes. The balance of the 128 bytes is consumed by the SIGNAL$INTERRUPT system
call and by storing the registers on the stack.

For more information about interrupt handlers, refer to the iRMX® I Nucleus User's Guide.

7.3 STACK GUIDELINES FOR CREATING TASKS AND JOBS

7-2

Whenever you invoke a system call to create a task, you must specify the size of the task's
stack. Since every new job has an initial task created simultaneously with the job, you must
also specify a stack size whenever you create a job.

When you specify a task's stack size, you should do so carefully. If you specify a number
that is too small, your task might overflow its stack and write over information following
the stack. This condition can cause your system to fail. If you specify a number that is too
large, the excess memory will be wasted. Ideally, you should specify a stack size that is only
slightly larger than what is actually required.

This chapter provides two techniques for estimating the size of your task's stack. One
technique is arithmetic, and the other is empirical. For best results, you should start with
the arithmetic technique and then use the empirical technique for tuning your original
estimate.

Programming Techniques

GUIDELINES FOR STACK SIZES

7.4 STACK GUIDELINES FOR TASKS TO BE LOADED OR INVOKED

If you are creating a task to be loaded by the Application Loader or invoked by the Human
Interface, you must specify the size of the task's stack during the linking or locating
process. The arithmetic and empirical techniques that follow will help you estimate the
stack size.

7.5 ARITHMETIC TECHNIQUE

This technique gives a reasonable overestimate of your task~s stack size. After you use this
technique to obtain a first approximation, you may be able to save several hundred bytes of
memory by using the empirical technique described later in this chapter.

The arithmetic technique is based on three elements that affect a task's stack:

• Interrupts

• iRMX I system calls

• Requirements of the task's code (for example, the stack used to pass parameters to
procedures or to hold local variables in re-entrant procedures)

You can estimate the size of a task's stack by adding the amount of memory needed to
accommodate these elements. The following sections explain how to compute these values.

7.5.1 Stack Requirements for Interrupts

Whenever an interrupt occurs while your task is running, the interrupt handler uses your
task's stack while servicing the interrupt. Thus, you must ensure that your task's stack is
large enough to accommodate the needs of two interrupt handlers: one for maskable
interrupts and one for nonmaskable interrupts. All interrupt handlers used with the
iRMX I Operating System are designed to ensure that even if two interrupts occur (one
maskable, one not), no more than 128 (decimal) bytes of stack are required by the
interrupt handlers.

7.5.2 Stack Requirements for System Calls

When your task invokes an iRMX I system call, the processing associated with the call uses
some of your task's stack. The amount of stack required depends on which system calls
you use.

Programming Techniques 7-3

GUIDELINES FOR STACK SIZES

7-4

Table 7-1 shows how many bytes of stack your task must have to support various system
calls. To find out how much stack you must allocate for system calls, compile a list of all
the system calls that your task uses. Scan Table 7-1 to find which of your system calls
requires the most stack. By allocating enough stack to satisfy the requirements of the
most demanding system call, you can satisfy the requirements of all system calls used by
your task.

Table 7-1. Stack Requirements for System Calls

System Calls Bytes (Decimal)

S$SEND$COMMAND 800
CGETINPUT$PATHNAME

CGETOUTPUT$PATHNAME

CGETINPUT$CONNECTION

CGETOUTPUT$CONNECTION

All other Human Interface 600
System Calls

S$LOAD$IO$JOB 440

A$LOAD$IO$JOB 400
A$LOAD

S$OVERLAY

EXTENDED I/O SYSTEM CALLS 400

BASIC I/O 300
SYSTEM CALLS

CREATE$JOB 225

DELETE$EXTENSION

DELETE$JOB

DELETE$TASK

FORCE$DELETE

RESET$INTERRUPT

All Other Nucleus Calls 125

Programming Techniques

GUIDELINES FOR STACK SIZES

7.5.3 Computing the Size of the Entire Stack

To compute the size of the entire stack, add the following three numbers:

• The number of bytes required for interrupts (128 decimal bytes)

• The number of bytes required for system calls

• The amount of stack required by the task's code segment

This sum is a reasonable estimate of your task's stack requirements. For more accuracy,
use the sum as a starting point for the empirical fine tuning described below.

7.6 EMPIRICAL TECHNIQUE

This technique starts with a large stack and uses the iRMX I Debugger to determine how
much of the stack is unused. Once you have found out how much stack is unused, you can
modify your task- and job-creation system calls to create smaller stacks.

The cornerstone of this technique is the iRMX I Dynamic Debugger. To use the
Debugger, you must include it when you configure your application system. Refer to the
iRMX® I Interactive Configuration Utility Reference Manual for detailed information.

The INSPECT TASK command of the Dynamic Debugger provides a display that includes
the number of bytes of stack that have not been used since the task was created. If you let
your task run a sufficient length of time, you can use the INSPECT TASK command to find
out how much excess memory is allocated to your task's stack. Examine the stack area and
check how much of it still contains the stack's initial value (OC7H). You can then adjust
the stack-size parameter of the system call to reserve less stack.

The only judgment you must exercise when using this technique is deciding how long to let
your task run before obtaining your final measurement. If you do not let the task run long
enough, it might not meet the most demanding combination of interrupts and system calls.
This could cause you to underestimate your task's stack requirement and thus lead to a
stack overflow in your final system.

Underestimation of stack size is a risk inherent in this technique. For example, your task
might be written to use its peak demand for stack only once every two months. Yet you
probably don't want to let your system run for two months just to save several hundred

. bytes of memory. You can avoid such excessive trial runs by padding the results of shorter
runs. For instance, you might run your task for 24 hours and then add 200 (decimal) bytes
to the maximum stack size. This padding reduces the probability of overflowing your task's
stack in your final system.

Programming Techniques 7-5

A
Application code 2-3
Application Loader

System Call File Names 2-11
Application Loader 2-4, 2-6, 7-1, 7-3
ASM864-1

8
Basic I/O System

System Call File Names 2-9
Basic I/O System 2-4, 2-6, 3-1, 5-2

C
CATALOG$OBJECT 5-4
CODE AREA SIZE 1-3
Code segment

stack required 7-5
Composite objects 5-1
Connection objects 5-3
CONSTANT AREA SIZE 1-3
Conventions v
CREATE$JOB 5-5
CREATE$SEGMENT 6-1,6-2
CREATE$SEMAPHORE 5-3

D
Debugger 7-5
Decision Algorithm for Size Control 1-4
DELETE$EXTENSION 6-3
DELETE$JOB 6-3
DELETE$SEGMENT 5-2
Device I/O 5-2
Dynamic Debugger

INSPECT TASK command 7-5

E
E$MEM condition code 6-4
Extended I/O System 2-4, 2-6, 5-2

System Call File Names 2-10
External Declaration INCLUDE Files 2-5

Programming Techniques

INDEX

Index-!

INDEX

F
File

connection 5-3
named 5-1
stream 5-1, 5-2

FO RTRAN86 Include File 2-14

G
Get time 3-2
GET$TASK$TOKENS 5-4, 5-5
GET$TIME 3-1

H
Human Interface 2-4, 2-6, 7-1, 7-3

System Call File Names 2-11

INCLUDE files 3-1
Procedure For Combining 2-5

Init time 3-2
Initialization tasks 3-1, 3-2
INSPECT TASK command 7-5
Interrupt handlers 7-1, 7-2

stack 7-3
Interrupts 7-1, 7-3

bytes required 7-5

J
Jobs 1-1,5-1

L
LINK86 utility 3-1
LOOKUP$OBJECT 5-4

M
Mailboxes 5-1, 5-5, 5-6
Maintain time 3-2
MAXIMUM STACK SIZE 1-3
Memory

deadlock 6-1, 6-3, 6-4
locations 2-2
management 6-1
pool 6-4
requirements for code 1-3
requirements for stack 1-3
requirements for static data 1-2

Index-2 Programming Techniques

Model of segmentation 1-1
MODULE INFORMATION AREA 1-3
Multiprogramming systems 5-1

N
Nucleus

System Call File Names 2-7,2-8
Nucleus 2-5
Nucleus 5-2
Nucleus System Calls 2-13

o
Object code libraries 2-4
Object directories 5-3
Object directory 5-4
Object libraries 2-1
Object modules

linking 2-1
Object-Passing Techniques

Comparison 5-6

p
Parameter object 5-5
PASCAL86 compiler 2-14

data type checking 2-13
Include File 2-13

PL/M-86
external procedure declarations 2-5
interface procedures 4-2
size control 2-4, 4-1

PL/M-86 1-1,2-4,3-3,4-1
size control 2-1

Procedure call 2-3
interianguage 4-1

Program size control 1-1, 1-2

Q

R
RECEIVE$UNITS 5-4
Regions 6-1
Re-entrant procedures 7-3
RMXPAS.EXT 2-13
RQ$CREATE$TASK 2-13
Rq$send$message 4-1

Programming Techniques

INDEX

Index-3

INDEX

S
Segments 1-1, 5-1, 5-5
Semaphore 5-3, 5-4, 6-1
SEND$MESSAGE 4-1, 6-3
Set time 3-2
SET$TIME 3-1
Stack

Computing the Size 7-5
overflow 7-2
Requirements for Interrupts 7-3
Requirements for System Calls 7-4
size 7-2

STACKPTR parameter 2-13
dynamic allocation 1-2

Structures
BASED 1-2

System call 2-3, 4-1, 7-3
bytes required 7-5
stack requirements call 7-4
task- and job-creation 7-5

T
Tasks 1-1,5-1

u
Universal Development Interface 2-4, 2-6

System Call File Names 2-12

V
VARIABLE AREA SIZE 1-3

Index-4 Programming Techniques

iRMX~ I Programming Techniql
Reference Manl

462931-0

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of a
Intel product users. This form lets you participate directly in the publication process. Your commen1
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of thi
publication. If you have any comments on the product that this publication describes, please conta<
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestion
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types a
publications are needed?

4. Did you have any difficulty understanding descriptions or wording'> Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME __ DATE

TITLE
COM~NYNAM~DEPARTMENT __ ~

ADDRESS ___ ~P~H~O~N~E~(~~~ ______ ____

CITY _____________________ STATE ________________ ZIP CODE

(COUNTRY)

Please check here if you reqUi re a written reply D

E'D LIKE YOUR COMMENTS ...

!is document is one of a series describing Intel products. Your comments on the back of this form will
Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
mments and suggestions become the property of Intel Corporation.

'ou are in the United States, use the preprinted address provided on this fQrm to return your
mments. No postage is required. If you are not in the United States, return your comments to the Intel
les office in your country. For your convenience, international sales office addresses are printed on
~ last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124-9978

11.1 •• 1 ••• 1 ••• 11 •• 1.1.1 •• 11.1 •• 1.1 •• 1 ••• 11 •• 1 •• 1 •• 11

NO POSTAGE
NECESSARY
IF MAILED

INTHE
. UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor

dk-2400 Copenhagen

ENGLAND
Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris
1 Rue Edison-BP 303

78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.

Atidim Industrial Park

Neve Sharet

P.O. Box 43202
Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN
Intel Japan K.K.
Flower-Hill Shin-machi

1-23-9, Shinmachi
Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box 92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN
Intel Sweden A.B.

Dalvaegen 24

S-171 36 Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zu ri ch

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
0-8000 Munchen

inter

•
•
•
•
•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

•

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •

INTEL CORPORATION
3065 Bowers Avenue

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

Santa Clara, California 95051
(408) 987-8080

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

• • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

