

SIGNALSEXCEPTION

/**

* In this example the SIGNALSEXCEPTION system call is invoked by *
* extensions of the operating system to signal the occurrence of an *

* E$CONTEXT exceptional condition. %
B e

CALL RQ$SIGNALSEXCEPTION (eScontext,
param$num,
stack$pointer,
reserved$word,
reserved$word,
@status);

[]
. Typical PL/M-86 Statements
o

END SAMPLEPROCEDURE; -

Condition Codes

E$OK 0000H No exceptional conditions.

Nucleus System Calls 171

SIGNALSINTERRUPT

The SIGNALSINTERRUPT system call is used by an interrupt handler to activate an
interrupt task.

CALL RQS$SIGNALSINTERRUPT (level, except$ptr);

Input Parameter

level A WORD containing an interrupt level that is encoded as follows
(bit 15 is the high-order bit):

Bits Value
15-7 Reserved bits that should be set to zero.
6-4 First digit of the interrupt level (0-7).
3 If one, the level is a master level and bits 6-4 specify the

entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call. All
exceptional conditions must be processed in-line, as control does not
pass to an exceptional handler.

Description

An interrupt handler uses SIGNALSINTERRUPT to start up its associated interrupt task.
The interrupt task runs in its own environment with higher (and possibly the same) level
interrupts enabled, whereas the interrupt handler runs in the environment of the
interrupted task with all interrupts disabled. The interrupt task can also make use of
exception handlers, whereas the interrupt handler always receives exceptions in-line.

172 Nucleus System Calls

SIGNALSINTERRUPT

Example

Y
* This example illustrates how the SIGNAL$INTERRUPT system call can

* be used to activate an interrupt task. *
Fkkdkkkb bbbkl /

DECLARE TOKEN LITERALLY ’'SELECTOR';
/% if your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE (: RMX : INC/NUCLUS . EXT)

DECLARE interrupt$level$7 LITERALLY ‘0000000001111000B’;
/* specifies master interrupt level 7%/
DECLARE ES$OK LITERALLY ‘OOH’;
DECLARE theS$first$word WORD;
DECLARE interrupt$task$flag BYTE;
DECLARE interrupt$handler POINTER;
DECLARE data$segment TOKEN;
DECLARE status WORD;
DECLARE interruptS$status WORD;
DECLARE ds$pointer POINTER;
DECLARE PTRSOVERLAY LITERALLY ‘STRUCTURE (offset WORD,
base TOKEN) ‘' ;

/* establishes a structure for
overlays */

DECLARE ds$pointerS$ovly PTRSOVERLAY AT (@ds$pointer);

/* using the overlay structure, the
base address of the interrupt
handler’s data segment is
identified %/

INTERRUPTHANDLER: PROCEDURE INTERRUPT 59 PUBLIC; /* 59 is meaningless
value. ENTERSINTER-
RUPT establishes
actual level */

L]
. Typical PL/M-86 Statements
] .

Nucleus System Calls 173

SIGNALSINTERRUPT

/TR Rk kR kbR kbbb okt
* The calling interrupt handler invokes the ENTERSINTERRUPT system *
call which loads a base address value (defined by *
ds$pointer$ovly.base) into the data segment register. This *
register provides a mechanism for the interrupt handler to pass *
data to the interrupt task to be started up by the SIGNAL$INTERRUPT *

system call. *
Fokdokak ok kb Tk ko Rk ek kR ok Rk /

%* % & % *

CALL RQ$ENTER$INTERRUPT . (interrupt$level$7,
@interrupt$status);
CALL INLINEERRORPROCESS (interrupt$status);
[]
. Typical PL/M-86 Statements

/**

* The interrupt handler uses SIGNAL$INTERRUPT to start up its *

* associated interrupt task. *
e e e L

CALL RQ$SIGNALS$INTERRUPT (interrupt$level$7,
@interrupt$status);
CALL INLINEERRORPROCESS (interrupt$status);

END INTERRUPTHANDLER;

INLINEERRORPROCESS: PROCEDURE(int$status);
DECLARE int$status WORD;

IF int$status <> E$OK THEN
DO;

[]
. Typical PL/M-86 Statements
[]

END;

END INLINEERRORPROCESS;

174 Nucleus System Calls

SIGNALSINTERRUPT

SAMPLEPROCEDURE:
PROCEDURE;

ds$pointer = @the$first$word; /* a dummy identifier used to point to
interrupt handler’s data segment */
data$segment = ds$pointer$ovly.base;
/* identifies the base address of the
interrupt handler’s data segment */
interrupt$handler = INTERRUPT$PTR (INTERRUPTHANDLER);
/* points to the first instruction of
the interrupt handler */
interrupt$task$flag = O01H; /* indicates that calling task is to be
interrupt task */

[]
. Typical PL/M-86 Statements
L]

Y it
* By first invoking the SET$INTERRUPT system call, the calling task %

* sets up an interrupt level and becomes the interrupted task for *
* level 7. *

**/

CALL RQS$SETSINTERRUPT (interrupt$level$7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@status);

Typical PL/M-86 Statements

END SAMPLEPROCEDURE;

Nucleus System Calls 175

SIGNALSINTERRUPT

Condition Codes

E$OK 0000H No exceptional conditions.
E$CONTEXT 0005H No interrupt task is assigned to the specified
level.

ESINTERRUPTSOVERFLOW (000AH The interrupt task has accumulated more
than the maximum allowable number of
SIGNALSINTERRUPT requests. It had
reached its saturation point and then called
ENABLE to allow the handler to receive
further interrupt signals. It subsequently
received an additional
SIGNALSINTERRUPT request before
calling WATTSINTERRUPT.

ESINTERRUPT$SATURATION 0009H The interrupt task has accumulated the
maximum allowable number of
SIGNALSINTERRUPT requests. This is an
informative message only. It does not
indicate an error.

ESLIMIT 0004H An overflow has occurred because the
interrupt task has received more than 255
SIGNALSINTERRUPT requests.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The level parameter is invalid.

176 Nucleus System Calls

SLEEP

The SLEEP system call puts the calling task to sleep.

CALL RQ$SLEEP (time$limit, except$ptr);

Input Parameter

time$limit A WORD indicating the conditions in which the calling task is to be
put to sleep.

o If not zero and not OFFFFH, causes the calling task to go to
sleep for that many clock intervals, after which it will be
awakened. The length of a clock interval is configurable. Refer
to the iRMX® I Interactive Configuration Utility Reference Manual
for further information.

o If zero, causes the calling task to be placed on the list of ready
tasks, immediately behind all tasks of the same priority. If there
are no such tasks, there is no effect and the calling task
continues to run.

¢ If OFFFFH, an error is returned.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

The SLEEP system call has two uses. One use places the calling task in the asleep state for

-a specific amount of time. The other use allows the calling task to defer to the other ready
tasks with the same priority. When a task defers in this way it is placed on the list of ready
tasks, immediately behind those other tasks of equal priority.

Nucleus System Calls 177

SLEEP

Example

/ o R s R e Tt e e e s R e s

* This example illustrates how the SLEEP system call can be used. *
Fokdkokdokkdkkkkkbkkk ko kok kbbb kokob ko okkkk ko ok ootk ok /

DECLARE TOKEN LITERALLY ’'SELECTOR';
/* 1f your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE (:RMX: INC/NUCLUS . EXT)

DECLARE time$limit WORD;
DECLARE status " WORD;
SAMPLEPROCEDURE:
PROCEDURE;
time$limit = 100; /* sleep for 100 clock ticks */
L]
° Typical PL/M-86 Statements
L J
[}FFFFF kIR F*FFF* Ik Rk koo ok ke ook ok ek okt
* The calling task puts itself in the asleep state for 100 clock *
* ticks by invoking the SLEEP system call. *
Fokddok kb ok dkokk ok kok kb ok ok okt iokkoinbbkkob ok koo ko ok ook oot ok /
CALL RQ$SLEEP (time$limit,
@status);
L]
o Typical PL/M-86 Statements
[]

END SAMPLEPROCEDURE;

Condition Codes

E$OK 0000H No exceptional conditions.

ENOTSCONFIGURED 0008H This system call is not part of the present
configuration.

E$PARAM 8004H The time$limit parameter contains the invalid
value OFFFFH.

178 " Nucleus System Calls

SUSPENDS$TASK

The SUSPENDS$TASK system call increases by one the suspension depth of a task.

CALL RQ$SUSPENDSTASK (task, except$ptr);

Input Parameter

task A TOKEN specifying the task whose suspension depth is to be
incremented.
¢ if not SELECTOR$OF(NIL) or zero, contains a token for the
task whose suspension depth is to be incremented.
o if SELECTOR$OF(NIL) or zero, indicates that the calling task
is suspending itself.
Output Parameter
except$ptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.
Description

The SUSPENDS$TASK system call increases by one the suspension depth of the specified
task. If the task is already in either the suspended or asleep-suspended state, its state is
not changed. If the task is in the ready or running state, it enters the suspended state. If
the task is in the asleep state, it enters the asleep-suspended state.

SUSPENDSTASK cannot be used to suspend interrupt tasks.

Nucleus System Calls 179

SUSPENDS$TASK

Example

Yt T T T
* This example illustrates how the SUSPEND$TASK system call can be *

* wused to

increase the suspension depth of a non-interrupt task. *

K kR e R R R R R e e e e e T e /

DECLARE

TOKEN LITERALLY ’‘SELECTOR’;
/* if your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE (: RMX: INC/NUCLUS . EXT)

TASKCODE: PROCEDURE EXTERNAL;
END TASKCODE;

DECLARE task$token TOKEN;

DECLARE priority$level$200 LITERALLY '200';

DECLARE start$address POINTER;

DECLARE data$seg TOKEN;;

DECLARE stack$pointer POINTER;

DECLARE stack$size$512 LITERALLY '512'; /* new task's stack
size is 512 bytes */

DECLARE task$flags WORD;

DECLARE status WORD;

SAMPLEPROCEDURE:

PROCEDURE;

start$address = @TASKCODE; /* first instruction of the new task */

data$seg =SELECTOR$OF(NIL); /* task sets up own data seg */

stack$pointer = NIL; /* automatic stack allocation */

task$flags = O; /* designates no floating-point

180

instructions */

Typical PL/M-86 Statements

Nucleus System Calls

SUSPENDS$TASK

J¥Fkkdkdokdokdokk kb kb iokk ok ok ki ko kb iok ok ok koo ko ok koo ook
* In order to suspend a task, a task must know the token for that *
* task. In this example, the needed token is known because the *

* calling task creates the new task (whose code is labeled TASKCODE). *
B

task$token = RQSCREATESTASK (priority$level$200,
start$address,
data$seg,
stack$pointer,
stack$size$512,
task$flags,
@status);

L]
° Typical PL/M-86 Statements
[]

/**

* After creating the task, the calling task invokes SUSPEND$TASK. *
* This system call increases by one the suspension depth of the new #*
* task (whose code is labeled TASKCODE). *

**/

CALL RQ$SUSPENDSTASK (task$token, @status);
[]
° Typical PL/M-86 Statements
o

END SAMPLEPROCEDURE;

Condition Codes

E$OK : 0000H No exceptional conditions.

ESCONTEXT 000SH The specified task is an interrupt task. You
cannot suspend interrupt tasks.

ESEXIST 0006H The task parameter is not a token for an existing
object.

ESLIMIT 0004H The suspension depth for the specified task is

already at the maximum of 255.

E$TYPE 8002H The task parameter is a token for an object that
is not a task.

Nucleus System Calls 181

UNCATALOG$OBJECT

The UNCATALOGS$OBIJECT system call removes an entry for an object from an object
directory. .

CALL RQSUNCATALOGSOBJECT (job, name, except$ptr);

Input Parameters

job A TOKEN indicating the job of the object directory from which an
entry is to be deleted.

o If not SELECTORS$OF(NIL) or zero, the TOKEN contains a
token for the job from whose object directory the specified entry
is to be deleted.

o If SELECTORS$OF(NIL) or zero, the entry is to be deleted
from the object directory of the calling task’s job.

name A POINTER to a STRING containing the name of the object whose
entry is to be deleted.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

The UNCATALOGS$OBIJECT system call deletes an entry from the object directory of the
specified job.

182 Nucleus System Calls

UNCATALOGS$OBJECT

Example

/Fkokkoinnrnbsnnbnrannr koo b obbobbnrbosoreokos oo
* This example illustrates how the UNCATALOGSOBJECT system call can *
* be used. *

**/

DECLARE TOKEN LITERALLY 'SELECTOR';
/% if your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
SINCLUDE(:RMX: INC/NUCLUS.EXT)

DECLARE seg$token TOKEN;
DECLARE size WORD;
DECLARE mbx$token TOKEN;
DECLARE mbx$flags WORD;
DECLARE noSresponse LITERALLY ‘0’';
DECLARE status WORD;
DECLARE job$token TOKEN;

SAMPLEPROCEDURE:
PROCEDURE;
size = 64; /* designates new segment to contain 64
bytes */
mbx$flags = 0; /* designates four objects to be queued

on the high performance object
queue; designates a first-in/
first-out task queue */

job$token = SELECTORSOF(NIL); /* indicates objects to be cataloged
into the object directory of the
calling task’'s job */

Typical PL/M-86 Statements

/**

% The calling task creates a segment and a mailbox and catalogs the ¥
* mailbox TOKEN. The calling task then uses the TOKENs for both *
* objects to send a message. *

B e s T e

segStoken = RQ$CREATESSEGMENT (size,
@status);

mbx$token = RQSCREATESMAILBOX (mbx$flags,
@status);

Nucleus System Calls

183

UNCATALOGS$OBJECT

/ Fdekeabkkededk ke ke e b vk etk b e e v ek s ke s el ek ke e s s e ok e e e e s ke et s sl s b e ek e e ke b ek e et

* It is not mandatory for the calling task to catalog the mailbox *
* token in order to send a message. It is necessary, however, to *
* catalog the mailbox token if a task in another job is to receive *

* the message. *
Kok kk ki kkkbkbkok kbbb kk bk ok kbbb ko ook kbbb kbbb ko kot /

CALL RQ$CATALOG$OBJECT (job$token,
mbx$token,
@(3, 'MBX'),
@status);
[]
. Typical PL/M-86 Statements

JxFkkkokkkdkkokkok ok ook ik ok ook kok kb ook ok ok ok bbb ol ook ok
* The calling task invokes the SENDSMESSAGE system call to send the %

* token for the segment to the specified mailbox. *
e

CALL RQS$SENDSMESSAGE (mbx$token,
seg$token,
no$response,
@status);

°
. Typical PL/M-86 Statements

Y ey
* When the mailbox is no longer needed and there is no need to keep *
* its token cataloged, it may be deleted by any task that knows its *

* token. *
Fkkkkok kbbb kbbbt /

CALL RQ$UNCATALOG$OBJECT (job$token,
@(3,'MBX'),
@status);
CALL RQSDELETES$MAILBOX (mbx$token,
@status);
[]
. Typical PL/M-86 Statements

END SAMPLEPROCEDURE;

184 Nucleus System Calls

UNCATALOGS$OBJECT

Condition Codes
E$OK 0000H No exceptional conditions.

ESCONTEXT 0005H The specified object directory does not contain
an entry with the designated name.

E$EXIST 0006H The job parameter is neither zero nor a token for
an existing object.

ENOTCONFIGURED 0008H This system call is not part of the present
configuration.

ESPARAM 8004H The first byte of the STRING pointed to by the
name parameter contains a value greater than 12
or equal to 0.

ESTYPE 8002H The job parameter is a token for an object that is
not a job.

Nucleus System Calls 185

WAITSINTERRUPT

The WAITSINTERRUPT system call is used by an interrupt task to signal its readiness to
service an interrupt.

CALL RQSWAITSINTERRUPT (level, except$ptr);

Input Parameter

level A WORD specifying an interrupt level which is encoded as follows
(bit 15 is the high-order bit):

Bits Value
15-7 Reserved bits that should be set to zero.
6-4 First digit of the interrupt level (0-7).
3 If one, the level is a master level and bits 6-4 specify the

entire level number.

If zero, the level is a slave level and bits 2-0 specify the
second digit.

2-0 Second digit of the interrupt level (0-7), if bit 3 is zero.

Output Parameter

except$ptr A POINTER to a WORD to which the iRMX I Operating System
will return the condition code generated by this system call.

Description

The WAITSINTERRUPT system call is used by interrupt tasks immediately after
initializing and immediately after servicing interrupts. Such a call suspends an interrupt
task until the interrupt handler for the same level resumes it by invoking

SIGNALSINTERRUPT.

186 Nucleus System Calls

WAITSINTERRUPT

While the interrupt task is processing, all lower level interrupts are disabled. The
associated interrupt level is either disabled or enabled, depending on the option originally
specified with the SETSINTERRUPT system call. If the associated interrupt level is
enabled, all SIGNALSINTERRUPT calls that the handler makes (up to the limit specified
with SETSINTERRUPT) are logged. If this count of SIGNALSINTERRUPT calls is
greater than zero when the interrupt task calls WAITSINTERRUPT, the task is not
suspended. Instead it continues processing the next SIGNALSINTERRUPT request.

If the associated interrupt level is disabled while the interrupt task is running and the
number of outstanding SIGNALSINTERRUPT requests is less than the user-specified
limit, the call to WAITSINTERRUPT enables that level.

Example

Y e o e e e e

* This example illustrates how the WAIT$INTERRUPT system call can be *
* used to signal a task’s readiness to service an interrupt. *
Stk kbbb Rk ek /

DECLARE TOKEN LITERALLY 'SELECTOR’;
/* if your PL/M compiler does not
support this variable type,
declare TOKEN a WORD */

/* NUCLUS.EXT declares all nucleus system calls */
$INCLUDE (: RMX: INC/NUCLUS . EXT)

INTERRUPTHANDLER: PROCEDURE INTERRUPT 63 EXTERNAL;
END INTERRUPTHANDLER;

DECLARE taskS$token TOKEN;
DECLARE priority$level$150 LITERALLY '150';
DECLARE start$address POINTER;
DECLARE data$segment TOKEN;;
DECLARE stack$pointer POINTER;
DECLARE stack$size$512 LITERALLY '512'; /* new task’s stack
size is 512 bytes */
DECLARE task$flags WORD;
DECLARE interrupt$level$7 LITERALLY '0000000001111000B’;
/* specifies master interrupt level 7 %/
DECLARE interrupt$task$flag BYTE;
DECLARE interrupt$handler POINTER;
DECLARE interrupt$status WORD;
DECLARE status WORD;

Nucleus System Calls 187

WAITSINTERRUPT

INTERRUPTTASK: PROCEDURE PUBLIC;

interrupt$task$flag = O1lH; /* indicates that calling task is to
be interrupt task ¥*/
data$segment = SELECTORS$OF(NIL); /* use own data segment */
interrupt$handler = INTERRUPT$PTR (INTERRUPTHANDLER);
/* points to the first instruction of
the interrupt handler ¥/

/**

* The first system call in this example, SET$INTERRUPT, makes the *
* calling task (INTERRUPTTASK) the interrupt task for interrupt *
* level seven, *

**/

CALL RQS$SSET$INTERRUPT (interrupt$level$§7,
interrupt$task$flag,
interrupt$handler,
data$segment,
@interrupt$status);

Typical PL/M-86 Statements

Y
* The calling interrupt task invokes WAITSINTERRUPT to suspend itself *
* until the interrupt handler for the same level resumes the task by *

* invoking the SIGNAL$INTERRUPT system call. *
T e R R TRkt /

CALL RQSWAITSINTERRUPT (interrupt$level$§7,
@interrupt$status);
[]
° Typical PL/M-86 Statements
o

Y e e e e e e L e e

* When the interrupt task invokes the RESET$INTERRUPT system call, *
* the assignment of the current interrupt handler to interrupt level *
* 7 is cancelled and, because an interrupt task has also been *
* assigned to the line, the interrupt task is deleted. *

**/

CALL RQ$RESETS$INTERRUPT (interrupt$level$7,
@interrupt$status);
END INTERRUPTTASK;
SAMPLEPROCEDURE:
PROCEDURE;
start$address = @INTERRUPTTASK; /* lst instruction of interrupt
task */
stack$pointer = NIL; /* automatic stack allocation */

188 Nucleus System Calls

WAITSINTERRUPT

task$flags = 0; /% designates no floating-point
instrucitions */
data$segment = SELECTOR$OF(NIL); /* use own data segment */

®
° Typical PL/M-86 Statements
[J
Y e T
* 1In this example the calling task invokes the system call *
% CREATESTASK to create a task labeled INTERRUPTTASK. *

FRRRRF AR LR LT AR bbb kd bk b d d kbbb bk kb dkk ke k ok ko dok b kok ke ke ek stk b kbbbl etttk /

task$token = RQSCREATESTASK (priority$level$150,

start$address,
data$segment,
stack$pointer,
stack$size$512,
task$flags,
@status);
[]
o Typical PL/M-86 Statements
END SAMPLEPROCEDURE;
Condition Codes
E$OK 0000H No exceptional conditions.
E$CONTEXT 0005H The calling task is not the interrupt task for the
given level.

E$SNOT$CONFIGURED 0008H This system call is not part of the present
configuration.

-E$PARAM 8004H The level parameter is invalid.

Nucleus System Calls 189

INDEX

A

ACCEPT$CONTROL 7
ALTER$SCOMPOSITE 10

C

CATALOGS$OBIJECT 12
CREATE$COMPOSITE 15
CREATESEXTENSION 18
CREATES$JOB 21
CREATESMAILBOX 29
CREATES$REGION 33
CREATES$SEGMENT 36
CREATES$SEMAPHORE 39
CREATES$TASK 42

D

DELETE$SCOMPOSITE 47
DELETE$EXTENSION 49
DELETES$JOB 52
DELETESMAILBOX 55
DELETE$REGION 58
DELETE$SEGMENT 61
DELETE$SEMAPHORE 64
DELETESTASK 67
DISABLE 71
DISABLESDELETION 74

E

ENABLE 77

ENABLESDELETION 81

Encoded meanings for object types 110
Encoding of interrupt levels 77
ENDSINIT$TASK 84
ENTERSINTERRUPT 85

Nucleus System Calls Index-1

INDEX

E (continued)

Examples

ACCEPT$CONTROL 8
CATALOGS$OBIJECT 13
CREATES$JOB 25
CREATESMAILBOX 31
CREATES$REGION 34
CREATES$SEGMENT 37
CREATES$SEMAPHORE 40
CREATESTASK 44
DELETE$EXTENSION 50
DELETES$JOB 53
DELETE$MAILBOX 56
DELETE$REGION 59
DELETE$SEGMENT 62
DELETE$SEMAPHORE 65
DELETE$TASK 68
DISABLE 72
DISABLE$DELETION 75
ENABLE 78
ENABLESDELETION 82
ENTERSINTERRUPT 86
EXITSINTERRUPT 90
FORCESDELETE 93

GETSEXCEPTION$HANDLER 96

GETSLEVEL 98
GET$POOLSATTRIB 100
GET$PRIORITY 103
GETS$SIZE 106
GET$TASKS$TOKENS 109
GETSTYPE 111
LOOKUPS$OBIJECT 116
OFFSPRING 119
RECEIVESCONTROL 122
RECEIVESMESSAGE 126
RECEIVE$UNITS 129
RESETSINTERRUPT 132
RESUMESTASK 136
SEND$CONTROL 140
SEND$MESSAGE 143
SEND$UNITS 147

SETSEXCEPTIONSHANDLER 151

SETSINTERRUPT 157

Index-2

Nucleus System Calls

INDEX

E (continued)

SET$OSSEXTENSION 160
SET$POOLSMIN 163
SET$PRIORITY 166
SIGNALSEXCEPTION 170
SIGNALSINTERRUPT 173
SLEEP 178
SUSPENDS$TASK 180
UNCATALOGS$OBJECT 183
WAITSINTERRUPT 187
EXITSINTERRUPT 89

F
FORCESDELETE 92
G

GETSEXCEPTIONSHANDLER 95
GETSLEVEL 97
GET$POOLSATTRIB 99
GETS$PRIORITY 102

GETS$SIZE 105
GET$TASKSTOKENS 108
GETS$TYPE 110

I
INSPECT$COMPOSITE 113

L
LOOKUP$OBIJECT 115

M

Mailbox$flags
specifying information when creating a mailbox 29
Meaning of the encoded interrupt level WORD 97

0

OFFSPRING 118

Nucleus System Calls Index-3

INDEX

Q
Queuing scheme of a semaphore 39

R

RECEIVE$CONTROL 121

RECEIVESMESSAGE 124

RECEIVE$UNITS 128

Required top 5 words of stack for SIGNALSEXCEPTION 169
RESETSINTERRUPT 131

RESUMES$TASK 135

S

SEND$CONTROL 139
SENDSMESSAGE 142
SENDS$UNITS 146
SETSEXCEPTIONSHANDLER 148
SETSINTERRUPT 154
SET$OSSEXTENSION 159
SET$SPOOLSMIN 162
SET$PRIORITY 165
SIGNALSEXCEPTION 169
SIGNALSINTERRUPT 172
SLEEP 177
Structures
exception handler 22
extracting the DS register used by an interrupt task 156
for assigning as exception handler 149
information about the exception handler 95
pool attributes for GETSPOOLSATTRIBUTES 99
token$list for CREATE$COMPOSITE 15
token$list for INSPECT$COMPOSITE 113
SUSPENDS$TASK 179

u
UNCATALOGS$OBJECT 182
\'}

Values for GET$TASK$TOKENS selection parameter 108

Index-4 ' Nucleus System Calls

INDEX

w

WAITSINTERRUPT 186

Nucleus System Calls Index-5

inte|® iRMX® | Nucleus System Calls
Reference Manual
462928-001

REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this

publication. If you have any comments on the product that this publication describes, please contact
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS) PHONE ()

cITYy STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. []

WE’D LIKE YOUR COMMENTS.. ..

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

somments and suggestions become the property of Intel Corporation.

If you are in the United States, use the preprinted address provided on this form to return your
comments. No postage is required. If you are not in the United States, return your comments to the Intel
sales office in your country. For your convenience, international sales office addresses.are printed on

the last page of this document.

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

OMSO Technical Publications, MS: HF3-72
5200 N.E. Elam Young Parkway

Hillsboro, OR 97124-9978

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK

Intel Denmark A/S
Glentevej 61-3rd Floor
dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.
Piper’s Way

Swindon, Wiltshire SN3 1RJ

FINLAND

Intel Finland OY
Ruosilante 2
00390 Helsinki

FRANCE

Intel Paris

1 Rue Edison-BP 303

78054 St.-Quentin-en-Yvelines Cedex

ISRAEL

Intel Semiconductors LTD.
Atidim Industrial Park
Neve Sharet

P.O.Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation S.P.A.
Milandfiori, Palazzo E/4
20090 Assago (Milano)

JAPAN

Intel Japan K.K.
Flower-Hill Shin-machi
1-23-9, Shinmachi
Setagaya-ku, Tokyo 15

NETHERLANDS

Intel Semiconductor (Netherland B.V.)
Alexanderpoort Building

Marten Meesweg 93

3068 Rotterdam

NORWAY

Intel Norway A/S
P.O.Box 92
Hvamveien 4
N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-1ZQDA
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvaegen 24
S-17136Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17

8125 Glattbrugg
CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.
Seidlestrasse 27

D-8000 Munchen

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051
(408) 987-8080

