

CGETPARAMETER

index$p

except$ptr

A POINTER to a BYTE that receives the index to the list of
prepositions pointed to by predict$list$p. This index identifies the
name$p keyword as a preposition and identifies it out of the list of
possible prepositions. If the predict$list$p list is empty, or if the
keyword name is not contained in the predict$list$p list, the system
call returns a value of zero for the index. That is, the index will be
non-zero only if a keyword exists and it is one of the prepositions in
the predict$list$p list.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

40

CGETPARAMETER retrieves one parameter from the parsing buffer and moves the
parsing pointer to the next parameter. The parameter can be one of the following:

• keyword/value-list parameter using parentheses

• keyword/value-list parameter using an equal sign

• keyword/value-list parameter with the keyword as a preposition

• value-list without a keyword

A description of the types, format, and syntax of acceptable parameters is provided in the
iRMX® Human Interface User's Guide.

CGETPARAMETER places the keyword portion of the parameter in the string pointed
to by name$p; it places the keyword list in the string table pointed to by value$p.

Without input from you, CGETPARAMETER cannot determine whether groups of
characters separated by spaces are separate parameters or a single parameter that uses a
preposition. CGETPARAMETER uses the list of prepositions that you supply in the
string table pointed to by predict$list$p to determine the prepositions that can appear.
When CGETPARAMETER retrieves a parameter, it obtains, from the parsing buffer,
the next group of characters that are separated by spaces. These characters are checked
against those in the predict$list$p list. If the characters match one of the values in the list,
CGETPARAMETER realizes that the characters represent a preposition and not an
entire parameter; it then obtains the next group of characters separated by spaces as the
value portion of the parameter.

Human Interface System Calls

Exception Codes

E$OK

E$CONTEXT

E$CONTINUED

E$LIMIT

E$LIST

E$LlTERAL

Human Interface System Calls

CGETPARAMETER

OOOOH No exceptional conditions were encountered.

OOOSH The calling task's job was not an I/O job. (Refer
to the iRMX® Extended I/O System User's Guide
for information about I/O jobs.)

0083H The call found a continuation character in the
parse buffer. Command lines should not contain
continuation characters.

0004H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job was not an I/O job.
(Refer to the iRMX® Extended I/O Systeln
User's Guide for information about I/O jobs.)

008SH At least one of the following is true:

• The parameter contains an unmatched
parenthesis.

• A value in the value list is missing or an
improper value was entered. Examples of
both these conditions are:

Value

A,B,

Comments

No value following second
comma.

A,B = C,D The equal sign can not be
used unless it is between
quotes: 'B = C' is valid.

A,B(C,E),F The parentheses can not be
used in a value unless it
is between quotes or set
off by commas.
A,B,(C,E),F is valid.

0080H The call found a literal (quoted string) in the
parsing buffer with no closing quote. This
condition should not occur in the command line
buffer.

41

CGETPARAMETER

E$MEM

E$PARAM

E$PARSE$TABLES

E$SEPARATOR

E$STRING

E$STRING$BUFFER

42

0002H The memory available to the calling task's job is
not sufficient to complete the call.

8004H The predict$list$p parameter pointed to a string
table, but the index$p parameter was set to zero
(0).

8080H The call found an error in an internal table used
by the Human Interface.

0082H The call found an invalid command separator in
the parsing buffer. This condition should not
occur in the command line buffer. The following
is a list of invalid command separators: > <,
< >, ", I, [, and].

8084H The string to be returned as the parameter name
or one of the parameter values exceeds the
length limit of 255 characters.

0081H The string to be returned as the parameter name
or one of the parameter values exceeds the
buffer size provided in the call.

Human Interface System Calls

C$SEND$COMMAND

C$SEND$COMMAND, a command processing call, sends command lines to a command
connection created by C$CREATE$COMMAND$CONNECTION and, when the
command is complete, invokes the command.

CALL RQCSEND$COMMAND(command$conn, line$p, command$except$ptr,
except$ptr);

Input Parameters
command$conn

line$p

A TOKEN for the command connection that receives the command
line.

A POINTER to a buffer used to store a STRING containing a
command line to execute.

Output Parameters
command$except$ptr A POINTER to a WORD in which the Human Interface returns

a condition code indicating the status of the invoked command.
This parameter is undefined if an exceptional condition code is
returned in the WORD pointed to by except$ptr.

except$ptr A POINTER to a WORD in which the Human Interface returns
a condition code indicating the status of the
C$SEND$COMMAND system call.

Description

You can use this system call when you want to invoke a command programmatically
instead of interactively. It stores a command line in the command connection created by
the C$CREATE$COMMAND$CONNECTION call, concatenates the command line with
any others already stored there, and (if the command invocation is complete) invokes the
command. The command can be any standard Human Interface command (as described in
the Operator's Guide To The iRMX® HUllzan Inteiface) or a command that you create.

As described in greater detail in the Operator's Guide To The iRMX® Hunlan Inteiface, a
command invocation can contain several continuation marks. The continuation mark (&)
indicates that the command line is continued on the next line. If the command line sent by
C$SEND$COMMAND is continued on another line (that is, contains a continuation
mark), the Human Interface returns an E$CONTINUED exception code and does not
invoke the command. You can then call C$SEND$COMMAND any number of times to
send the continuation lines.

Human Interface System Calls 43

C$SEND$COMMAND

C$SEND$COMMAND concatenates the original command line and all continuation lines
into a single command line in the command connection. It removes all continuation marks
and comments from this command line.

When the command invocation is complete (that is, the line sent by
C$SEND$COMMAND does not contain a continuation mark), the Human Interface
parses the command pathname from the command line. If no exception conditions halt the
process at this point, the Human Interface requests the Application Loader to load and
execute the command.

An Application Loader call creates an I/O job for the command, and validates the header,
group definition and segment definition records of the command's object file. Refer to the
8086 Family Utilities User's Guide or the iAPX 286 Utilities User's Guide For iRMX® II
Systems for explanations of segments, groups and object file formats.

C$SEND$COMMAND returns two condition codes: one for the C$SEND$COMMAND
call and one for the invoked command. The word pointed to by the except$ptr parameter
returns the C$SEND$COMMAND conditions, as described under the "Exception Codes"
heading in this command description. The WORD pointed to by the command$except$ptr
returns the invoked command's condition codes; the values returned depend on the
command invoked. The E$CONTROL$C exception code can be returned at either place.

NOTE

When a C$SEND$COMMAND call is made, the Human Interface sets the
CONTROL-C semaphore to the default Human Interface CONTROL-C
handler. If you previously set the CONTROL-C handler, it must be set
again after making this call. For more information see the iRMX® Human
Interface User's Guide.

Exception Codes

E$OK OOOOH No exceptional conditions were encountered.

44

E$ALREADY$A TTACHED 0038H The Extended I/O System was unable to attach
the device containing the object file because the
Basic I/O System has already attached the
device.

EBADGROUP 0061H The object file represented by the command's
pathname contained an invalid group definition
record.

Human Interface System Calls

EBADHEADER

EBADSEGDEF

E$CHECKSUM

E$CONTEXT

E$CONTINUED

EDEVDETACHING

E$DEVFD

E$EOF

E$EXIST

Human Interface System Calls

C$SEND$COMMAND

0062H The object file represented by the command's
path name does not begin with a header record
for a loadable object module.

0063H The object file represented by the command's
pathname contains an invalid segment definition
record.

0064H At least one record of the object file represented
by the command's pathname contains a
checksum error. This situation could occur if the
CHECKSUM amount calculated during the read
operation did not match the CHECKSUM field
of the record being read.

OOOSH The calling task's job was not created by the
Human Interface.

0083H The operating system detected a continuation
character while scanning the command line
pointed to by the line$p parameter. This
condition should occur if the command line is to
continue on the next line.

0039H The device containing the object file was in the
process of being detached.

0022H The Extended I/O System attempted the
physical attachment of a device that had formerly
been only logically attached. In the process, the
Extended I/O System found that the device and
the device driver specified in the logical
attachment were incompatible.

006SH The Application Loader encountered an
unexpected end of file on the object file
represented by the command's pathname.

0006H At least one of the following is true:

• The call detached the device containing the
object file before completing the loading
operation.

• The command$conn parameter is not a
TOKEN for a command connection.

45

C$SEND$COMMAND

E$FACCESS 0026H The default user for the calling task's job does
not have read access to the object file.

E$FLUSHING 002CH The device containing the object file was being
detached.

E$FNEXIST 0021H At least one of the following is true:

• The file in the command's pathname is either
marked for deletion or does not exist.

• While attaching the file specified in the
line$p parameter, the Extended I/O System
attempted the physical attachment of the
device as a named device. It could not
complete this process because the device
specified when the logical attachment was
made was not defined during configuration.

E$FTYPE 0027H The path pointed to by the path$name$p
parameter contained a component name that
should have been the name of a directory, but is
not. (Except for the last file, each file in a
pathname must be a named directory.)

E$ILLVOL 002DH The call attempted the physical attachment of
the specified device as a named device. This
device had formerly been only logically attached.
The call found that the volume did not contain
named files. This prevented the call from
completing physical attachment because the
named file driver was requested during logical
attachment.

E$INV ALID$FNODE 003DH The fnode for the specified file is invalid, so the
file must be deleted.

EIOHARD 0052H While attempting to access the object file, this
call detected a hard I/O error.

EIOMEM 0042H The Basic I/O System does not currently have
enough memory to allow the Human Interface to
create the connection necessary to allow this call
to run to completion.

46 Human Interface System Calls

C$SEND$COMMAND

EIONOT$READY

EIOSOFT

EIOUNCLASS

E$LIMIT

0053H While attempting to access the object file, this
call found that the device was off-line. Operator
intervention is required.

0051H While attempting to access the object file, this
call detected a soft I/O error. It tried again, but
was not successful. Another try might be
successful.

0050H An unknown type of I/O error occurred while
this call tried to access the object file.

0004 H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job, or the job's default
user object, is already involved in 255
(decimal) I/O operations.

• The new I/O job, or its default user, is
already involved in 255 (decimal) I/O
operations.

• The calling task's job was not created by the
Human Interface. (See to the iRMX®
Extended I/O Systel11, User's Guide for
information.)

E$ LITE RAL 0080H The call found a literal (quoted string) with no
closing quote while scanning the contents of the
command line pointed to by the line$p
parameter.

ELOGNAME$NEXIST 0045H The command's pathname contains an explicit
logical name, but the call was unable to find this
name in the object directory of the local job, the
global job, or the root job.

ELOGNAME$SYNTAX 0040H The pathname pointed to by the path$name$p
parameter contains a logical name. However,
the logical name contains an unmatched colon, is
longer than 12 characters, has zero (0)
characters, or contains invalid characters.

Human Interface System Calls 47

C$SEND$COMMAND

E$MEDIA

E$MEM

ENOLOADER$MEM

E$NOPREFIX

ENOSTART

ENOTCONNECTION

ENOTLOG$NAME

E$NOUSER

E$PARAM

48

0044H The device containing the object file was off-line.
If the device has removable media, the media
may not be in place.

0002H The memory available to the calling task's job,
the new I/O job, or the Basic I/O System job is
not sufficient to complete the call.

0067H At least one of the following is true:

• The memory pool of the newly created I/O
job does not currently have a block of
memory large enough to allow the
Application Loader to run.

• The memory pool of the Basic I/O System's
job does not currently have a block of
memory large enough to allow the
Application Loader to run.

8022H The calling task's job does not have a valid
defa ult prefix.

006CH The object file represented by the command
pathname does not specify the entry point for the
program being loaded.

8042H The default$ci or default$co parameter is a
token for an object that is not a file connection.

8040H The command pathname contains a logical name.
The logical name of an object that is neither a
device connection nor a file connection.

8021H The calling task's job does not have a valid
default user.

8004H The Extended I/O System attempted the
physical attachment of a device containing the
object file. This device had formerly been only
logically attached. While attempting this, the
Extended I/O System found that the logical
attachment referred to a file driver (named,
physical, or stream) that is not configured into
your system. Hence, the physical attachment is
not possible.

Human Interface System Calls

C$SEND$COMMAND

E$PARSE$TABLES 8080H The call found an error in an internal table.

E$PA THNAME$SYNTAX 003EH The command's pathname contains invalid
characters.

ERECFORMAT 0069H At least one record in the object file contains a
record format error.

ERECLENGTH 006AH The object file contains a record that is longer
than the Loader's maximum record length. The
Application Loader's maximum record length is
a parameter specified during the configuration of
the Loader. (Refer to the ICU reference manual
for details.)

ERECTYPE 006BH At least one of the following is true:

ESEGBOUNDS

E$SEPARATOR

E$STRING

E$STRING$BUFFER

E$TIME

E$TYPE

Human Interface System Calls

• At least one record in the file being loaded is
of a type that the Application Loader cannot
process.

• The Application Loader has encountered
records in a sequence that it cannot process.

0070H The Application Loader created multiple
segments in which to load information. One of
the data records in the object file specified a load
address outside of the created segments.

0082H The call found an invalid separator while
scanning the command line. The following is a
list of the invalid command separators: > <,
< >, II, I, [, and].

8084H The size of the command's pathname exceeds the
length limit of 255 (decimal) characters.

008IH The size of the command's pathname exceeds the
size of the command name buffer specified
during the configuration of the Human Interface.

000IH The calling task's job was not created by the
Human Interface.

8002H The command$conn parameter is a token for an
object that is not a command connection.

49

C$SEND$CO$RESPONSE

C$SEND$CO$RESPONSE, a message processing call, sends a message to :Co: and reads
a response from :CI:.

CALL RQCSENDCORESPONSE(response$p, response$max, message$p,
except$ptr);

Input Parameters
response$max A WORD whose value specifies the maximum length in bytes of the

string pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one

message$p

(string length + 1). If response$max is zero or one, no response
from :CI: will be requested; control returns to the calling task
immediately.

A POINTER to a STRING containing the message to be sent to
:CO:. If NIL, no message is sent.

Output Parameters
response$p

except$ptr

A POINTER to a buffer that receives the operator's response from
:CI:.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

so

When used with all its features, C$SEND$CO$RESPONSE sends the string pointed to by
message$p to :CO: and waits for a response from :CI:. It places this response in the string
pointed to by response$p. However, if message$p is NIL, C$SEND$CO$RESPONSE
omits sending the message to :CO:; if either response$max or response$p is NIL, it does
not wait for a response from :CI:. Therefore, the operations performed by
C$SEND$CO$RESPONSE depend on the values of the message$p and response$max
parameters, as follows:

message$p

NIL
NIL
NOT NIL
NOT NIL

response$max

zero
non-zero
non-zero
zero

Action

Perform no I/O
Send no message, wait for input
Send message, wait for input
Send message, don't wait

Human Interface System Calls

C$SEND$CO$RESPONSE

If C$SEND$CO$RESPONSE requests a response from :CI:, output from other tasks can
be displayed at :Co: while the system waits for a response from :CI:.

The difference between the C$SEND$CO$RESPONSE and C$SENDEORESPONSE
calls is that C$SEND$EO$RESPONSE always sends messages to and receives messages
from the operator's terminal; input and output cannot be redirected to another device. In
contrast, C$SEND$CO$RESPONSE sends messages to :CO: and receives messages from
:CI:; therefore, programs such as SUBMIT can redirect this input and output.

Exception Codes

E$OK

E$CONTEXT

E$CONN$OPEN

E$EXIST

OOOOH No exceptional conditions were encountered.

0005H The calling task's job was not created by the
Human Interface.

0035H At least one of the following is true:

• The connection to :CI: was not open for
reading or the connection to :CO: was not
open for writing.

• The connection to :CI: or :CO: was not open.

• The connection to :CI: or :Co: was opened
with A$OPEN rather than S$OPEN.

0006H The token value for :CI: or :Co: is not a token
for an existing object.

E$FLUSHING 002CH The device containing the :CI: and :Co: files was
being detached.

EIOHARD

EIONOT$READY

EIOSOFT

EIOUNCLASS

Human Interface System Calls

0052H While attempting to access the :CI: or :CO: file,
the operating system detected a hard I/O error.

0053H While attempting to access the :CI: or :CO: file,
this call found that the device was off-line.
Operator intervention is required.

0051H While attempting to access the :CI: or :CO: file,
this call detected a soft I/O error. It tried again,
but was unsuccessful. Another try might be
successful.

0050H An unknown type of I/O error occurred while
this call tried to access the :CI: or :CO: file.

51

C$SEND$CO$RESPONSE

EIOWRPROT 0054H While attempting to obtain a connection to the
:CO: file, this call found that the volume
containing the file is write-protected.

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job, or the job's default user
object, is already involved in 255 (decimal)
I/O operations.

• The calling task's job was not created by the
Human Interface.

E$MEM 0OO2H The memory available to the calling task's job is
not sufficient to complete the call.

ENOTCONNECTION 8042H The call obtained a token for an object that
should have been a connection to :CI: or :CO:,
but was not a file connection.

E$PARAM 8004H The call attempted to write beyond the end of a
physical file.

E$SPACE 0029H One of the following is true:

• The output volume is full.

• The call attempted to write beyond the end
of a physical file.

E$STREAM$SPECIAL 003CH When attempting to read or write to :CI: or
:CO:, the Extended I/O System issued an invalid
stream file request.

E$SUPPORT 0023H The connection to :CI: or :Co: was not created
by this job.

E$TIME OOOIH The calling task's job was not created by the
Human Interface.

52 Human Interface System Calls

C$SEND$EO$RESPONSE

C$SEND$EO$RESPONSE, a message processing call, sends a message to and reads a
response from the operator's terminal.

CALL RQCSENDEORESPONSE(response$p, response$max, message$p,
except$ptr);

Input Parameters
response$max

message$p

Output Parameters
response$p

except$ptr

Description

A WORD that specifies the maximum length in bytes of the string
pointed to by the response$p parameter. The value in
response$max must equal the length of the string plus one
(stringlength + 1). If response$max is zero or one, no response
from the operator's terminal will be requested; control returns to
the calling task immediately.

A POINTER to a buffer containing the message to be sent to the
operator's terminal. If NIL, no message is sent.

A POINTER to a STRING that receives the operator's response
from the terminal.

A POINTER to a WORD in which the Human Interface returns a
condition code.

When used with all its features, C$SEND$EO$RESPONSE sends the string pointed to by
message$p to the operator's terminal and waits for a response from the operator. It places
this response in the string pointed to by response$p. However, if message$p is NIL,
C$SEND$EO$RESPONSE omits sending the message to the operator; if either
response$max is zero or response$p is NIL, it does not wait for a response. Therefore, the
operations performed by C$SEND$EO$RESPONSE depend on the values of the
message$p and response$max parameters, as follows:

message$p

NIL
NIL
NOT NIL
NOT NIL

response$max

zero
non-zero
non-zero
zero

Human Interface System Calls

Action

Perform no I/O
Send no message, wait for input
Send message, wait for input
Send message, don't wait

53

C$SEND$EO$RESPONSE

If C$SEND$EO$RESPONSE requests a response from the terminal, no other output can
be displayed at the terminal until C$SEND$EO$RESPONSE receives a line terminator
from the operator. However, the operator can choose to ignore the displayed message by
entering a line terminator only.

The main distinction between the C$SEND$CO$RESPONSE and
C$SEND$EO$RESPONSE calls is that C$SENDEORESPONSE always sends messages
to and receives messages from the operator's terminal; input and output cannot be
redirected to another device. In contrast, C$SEND$CO$RESPONSE sends messages to
:Co: and receives messages from :CI:; therefore, programs such as SUBMIT can redirect
this input and output.

Exception Codes

E$OK

E$CONN$OPEN

OOOOH No exceptional conditions were encountered.

0035H At least one of the following is true:

E$CONTEXT

E$ERROR$OUTPUT

E$EXIST

E$FLUSHING

EIONOT$READY

54

• Either, the connection to the operator's
terminal was not open for reading or it was
not open for writing.

• The connection to the operator's terminal
was not open.

• The connection to the operator's terminal
was opened with A$OPEN rather than
S$OPEN.

0005H The calling task's job was not created by the
Human Interface.

8085H The call to SENDEORESPONSE was
attempted through an invalid method.

0006H The token values for the operator's terminal are
not for existing objects.

002CH The operator's terminal was being detached.

0053H While attempting to access the terminal, this call
found that the device was off-line. Operator
intervention is required.

Human Interface System Calls

C$SEND$EO$RESPONSE

E$LIMIT 0OO4H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

• The calling task's job was not created by the
Human Interface.

E$MEM 0OO2H The memory pool of the calling task's job does
not currently have a block of memory large
enough to allow this system call to run to
completion.

ENOTCONNECTION 8042H The call obtained a token for an object that
should have been a connection to the operator's
terminal, but was not a file connection.

E$PARAM 8004H The call attempted to write beyond the end of a
physical file.

E$STREAM$SPECIAL 003CH When attempting to read or write to the
operator's terminal, the Extended I/O System
issued an invalid stream file request.

E$SUPPORT 0023H The connection to the terminal was not created
by this job.

E$TIME OOOIH The calling task's job was not created by the
Human Interface.

Human Interface System Calls 55

CSETCONTROL$C

CSETCONTROL$C, a program control call, changes a calling task's CONTROL-C
exchange to the semaphore specified by the first parameter in the CSETCONTROL$C
call.

CALL RQCSET$CONTROL$C(controlcsernaphore, except$ptr);

Input Parameter
controlcsemaphore A TOKEN for a user-created semaphore that will receive units

when a CONTROL-C is typed on the console keyboard.

NOTE

When a C$SEND$COMMAND call is made, the Human Interface sets the
CONTROL-C semaphore to the default Human Interface CONTROL-C
handler. If you previously set the CONTROL-C handler, it must be set
again after making this call. For more information see the iRMX® Hun1an
Interface User's Guide.

Output Parameter
except$ptr A POINTER to a WORD in which the Human Interface returns a

condition code.

Description

56

This call lets you change the default response to a CONTROL-C entry to a response that
meets the needs of your task. (The Human Interface's default CONTROL-C action is to
delete the actingjob--for example, any Human Interface command.)

One unit will be sent to the semaphore each time a CONTROL-C is typed. Any units sent
to the semaphore that exceed the maximum number specified during system configuration
will be ignored.

Ajob running in background mode cannot set CONTROL-C.

Human Interface System Calls

Exception Codes

E$OK

E$CONTEXT

E$LIMIT

E$TYPE

Human Interface System Calls

CSETCONTROL$C

OOOOH No exceptional conditions were encountered.

0005H The calling task's job was not an I/O job. (Refer
to the iRMX® Extended I/O System User's Guide
for information about I/O jobs.)

0004H At least one of the following is true:

• The calling task's job has already reached its
limit.

• The calling task's job was not created by the
Human Interface.

• The calling task's job or the job's default user
object is already involved in 255 (decimal)
I/O operations.

8002H The TOKEN given in the parameter
controlcsemaphore is not a TOKEN for a
semaphore.

57

CSETPARSE$BUFFER

CSETPARSE$BUFFER, a command parsing call, permits parsing the contents of a
buffer other than the command line buffer whenever the parsing system calls are used.

offset = RQCSET$PARSE$BUFFER(buff$p, buff$max, except$ptr);

Input Parameters
buff$p A POINTER to a buffer containing a STRING containing the text

to be parsed. If the buff$p is NIL, the buffer used for parsing
reverts to the command line buffer and the buff$max parameter is
ignored.

buff$max A WORD that specifies the length in bytes of the STRING pointed
to by the buff$p parameter.

Output Parameters
offset

except$ptr

A WORD in which the Human Interface places the byte offset from
the start of the parsing buffer of the last byte parsed in the previous
parsing buffer.

A POINTER to a WORD in which the Human Interface returns a
condition code.

Description

58

CSETPARSE$BUFFER allows you to parse buffers other than the command line. You
can change buffers at will; you can also revert to the command line parsing buffer by calling
CSETPARSE$BUFFER with buff$p = NIL. However, only one parsing buffer per job
can be active at any given time.

When called, CSETPARSE$BUFFER sets the parsing pointer to the beginning of the
specified buffer. However, it also returns a value (in the offset parameter) that identifies
the last byte parsed in the previous parsing buffer. This gives you the ability, when
switching back to the previous buffer, of positioning the parsing pointer to its previous
position with successive calls to CGETCHAR.

Note that CSETPARSE$BUFFER does not affect the buffer from which
CGETINPUT$PA THNAME and C$GET$OUTPUT$PATHNAME retrieve
pathnames. These system calls always obtain their pathnames from the command line.

Honlan Interface System Calls

Exception Codes

E$OK

E$CONTEXT

E$LIMIT

E$MEM

Human Interface System Calls

CSETPARSE$BUFFER

OOOOH No exceptional conditions were encountered.

OOOSH The calling task's job was not created by the
Human Interface. (Refer to the iRM)(® Extended
I/O System User's Guide for information.)

0004H At least one of the following is true:

• The calling task's job has already reached its
object limit.

• The calling task's job was not created by the
Human Interface.

0002H The memory available to the calling task's job is
not sufficient to complete the call.

59

C
C$BACKUP$CHAR 5
C$CREATE$COMMAND$CONNECTION 6
C$DELETE$COMMAND$CONNECTION 10
C$FORMAT$EXCEPTION 11

exception code format 11
CGETCHAR 13
CGETCOMMAND$NAME 15
CGETINPUT$CONNECTION 17

errors returned to :CO: 17
CGETINPUT$PATHNAME 23
CGETOUTPUT$CONNECTION 29

errors returned to :CO: 30
CGETOUTPUT$PATHNAME 36
CGETPARAMETER 39
C$SEND$CO$RESPONSE 50
C$SEND$COMMAND 43
C$SEND$EO$RESPONSE 53
CSETCONTROL$C 56
CSETPARSE$BUFFER 58
Command connection 6

deleting 10
Command pathname 15
CONTROL-C

default handler 56
semaphore 56

D
Default message

creating 11
Deleting a commang connection 10

E
E$LIST

improper value examples 41
EIOS connection 17,29
Exception code

default message 11
format 11

Human Interface System Calls

INDEX

Index-l

INDEX

Invalid command separators 42
Invoking a command 43
Invoking commands programmatically 6

M
Message

reading from :CI: 50
sending to :Co: 50

reading from operator's terminal 53
sending to operator's terminal 53

p

Parsing buffer
changing 58
getting a character 13
getting a parameter 39
input pathnames 23
output pathname 36
pointer 5

Preposition parameter values
CGETOUTPUT$CONNECTION 29
CGETOUTPUT$PATHNAME 36

s
System call dictionary 3

Index-2 Human Interface System Calls

iRMX0 Human Interfc3
System Calls Reference Mam

462918-0

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of a
Intel product users. This form lets you participate directly in the publication process. Your commen1
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of thi
publication. If you have any comments on the product that this publication describes, please contac
your Intel representative.

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestion
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types 0

publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANYNAM~DEPARTMENT __ ~

ADDRESS PHONE (
---~~--~-----------

CITY STATE ZIP CODE ------------------------- --------------------
(COUNTRY)

Please check here if you require a written reply. D

E'D LIKE YOUR COMMENTS ...

is document is one of a series describing Intel products. Your comments on the back of this form will
Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
mments and suggestions become the property of Intel Corporation.

'ou are in the United States, use the preprinted address provided on this form to return your
mments. No postage is required. If you are not in the United States, return your comments to the Intel
les office in your country. For your convenience, international sales office addresses are printed on
~ last page of this document.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
OMSO Technical Publications, MS: HF3·72
5200 N.E. Elam Young Parkway
Hillsboro, OR 97124·9978

11111.1"11 ••• 11'11.1.11111.111111 •• 1111111.11.1'111

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

INTERNATIONAL SALES OFFICES

INTEL CORPORATION

3065 Bowers Avenue

Santa Clara, California 95051

BELGIUM

Intel Corporation SA
Rue des Cottages 65
B-1180 Brussels

DENMARK
Intel Denmark AlS

Glentevej 61-3rd Floor
dk-2400 Copenhagen

ENGLAND

Intel Corporation (U.K.) LTD.

Piper's Way

Swindon, Wiltshire SN3 1 RJ

FINLAND

Intel Finland OY

Ruosilante 2
00390 Helsi nki

FRANCE

Intel Paris

1 Rue Edison-BP 303
78054 St.-Quentin-en-Yvelines Cedex

ISRAEL
Intel Semiconductors LTD.

Atidim Industrial Park

Neve Sharet
P.O. Box 43202
Tel-Aviv 61430

ITALY
Intel Corporation S.P.A.

Milandfiori, Palazzo E/4

20090 Assago (Milano)

JAPAN
Intel Japan K.K.

Flower-Hill Shin-machi

1-23-9, Shinmachi

Setagaya-ku, Tokyo 15

NETHERLANDS
Intel Semiconductor (Netherland B.V.)

Alexanderpoort Building

Marten Meesweg 93
3068 Rotterdam

NORWAY
Intel Norway AlS

P.O. Box92
Hvamveien 4

N-2013, Skjetten

SPAIN

Intel Iberia

Calle Zurbaran 28-IZQDA

28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvaegen 24

S-171 36 Solna

SWITZERLAND

Intel Semiconductor A.G.
Talackerstrasse 17
8125 Glattbrugg

CH-8065 Zurich

WEST GERMANY

Intel Semiconductor G.N.B.H.

Seidlestrasse 27
0-8000 Munchen

inter

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •

•

• • • • • • • •
• • • • • • • •
• • • • • • • •

INTEL CORPORATION
3065 Bowers Avenue
Santa Clara, California 95051
(408) 987-8080

• • •
• • •
• • •

• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

