

DEBUG-432 Error Messages Workstation User's Guide

296 'BAD EOD FILE, EXCEPTION '<exc>'H
<cause><CR><LF>

'<outcome>'<CR><LF>

<detail><CR><LF>

<exc> ==> <4 digit hex>
<outcome> ==> 'LOAD FAILED' I 'LOADER WARNING' I 'LOAD ABORTED'
<cause> ==> 'FATAL ERROR':

'UNEXPECTED EOF ON CONSOLE INPUT' I
'MISSING EOD SPECIFICATION IN PREAMBLE' I
'COUNT FIELD FOR ITEM SIZE> 2 IN PREAMBLE'I
'EXPECTED SOG ITEM SPECIFICATION IN PREAMBLE':
'ITEM SPECIFICATION ALTERED IN PREAMBLE':
'ITEM SPECIFICATION ADDED IN PREAMBLE':
'UNEXPECTED EOF IN EOD':
'UNKNOWN ITEM ENCOUNTERED IN EOD' I
'EOG HAS NO CORRESPONDING SOG: EOG EOD ASSUMED'!
'SOG STACK OVERFLOW'!
'''EODRESTORE CALLED WITHOUT MATCHING PREVIOUS "EODSAVE"':
'LOOKING FOR SEGMENT DESCRIPTOR ITEM'!
'LOOKING FOR ADDRESS ITEM'!
'LOOKING FOR DATA ITEM' :
'REACHED END OF FILE WHILE LOADING DATA' I

<detail> ==> 'ITEM: '<ind>', TYPE:'<type>',<CR><LF>
[<i tern info>]

<ind> ==> <2 digit hex>
<type> ==> <2_digit_hex>
<item info> ==> 'SOURCE: '<source>', '<valid?>',

- '<size mode>', SIZE:'<size>[', TYPE BYTE']
<source> ==> 'DEFAULT'T'PREAMBLE'I 'UNKNOWN'
<valid?> ==> 'VALID' I 'INVALID'
<size mode> ==> 'FIXED' I 'VARIABLE'
<size) ==> <2_digit_hex>

When the debugger loads a file it must be in a specific format. The
debugger checks the file as it loads it to verify that it is in the
correct format. If the file does not conform this error message is
issued.

If a second attempt to load the same file results in the same error
message, the file is either not an output of LINK-432 or UPDATE-432 or
the file has been corrupted, for example while being downloaded from a
host computer.

297 'OVERFLOW DURING **'
298 'OVERFLOW DURING *'

F-28

The debugger checks for overflow while doing multiplication and
exponentiation.

Workstation User's Guide DEBUG-432 Error Messages

299 'CANNOT FIND PROCESSOR OBJECT'
300 'CANNOT FIND PROCESSOR COMMUNICATION OBJECT'

When the user sends a local IPC to a specific processor, the debugger
must find the processor object and find that processor's local
communication object. If either of these searches fails, then one of
these messages is given. For example, if the base or system type of the
communication object is incorrect, this message will be displayed.

301 'PROCESSOR COMMUNICATION OBJECT IS LOCKED'

When sending an IPC, the debugger must wri te into ei ther the local or
global communication object. If the debugger finds the object locked, it
does not write the message into the object, it does not send the IPC
signal, and it reports this error message. There are two possible
reasons for this error message: (1) The debugger IPC command was
executed just when a processor was either reading or writing the
communication object (unlikely) or (2) a processor faulted while trying
to read/write the communication object and never unlocked it.

302 'AN IPC MESSAGE IS PENDING AT THE PROCESSOR COMMUNICATION OBJECT'

When sending an IPC, the debugger checks to make· sure there is not
already a message in the communication object. If a message is already
there, this error is reported. The most likely reason for this error is
that the processor is faulted (not executing) and this is the second IPC
command executed by the debugger (i.e., the message from the first IPC is
pending) •

311 'NUMBER, "<number>", IS TOO BIG, DOES NOT FIT INTO 32 BITS

If a number is input which, when the debugger is converting from ascii to
binary, does not fit into 32 bits, this error is given.

312 'REMOVE ALL ABORTED'

This message is the second message, after a specific error message
indicating which symbol could not be removed, and why. This might happen
if a breakpoint cannot be removed because the OS has made the instruction
data segment temporarily inaccessible. Retrying the "REMOVE ALL" may
work in this latter case.

313 'TOO MANY TEMPORARY SYMBOLS ACTIVE'

The debugger does not enter symbols into the debugger symbol table until
the definition is complete. This requires that the debugger buffer the
definition until it is finished. If the definition of the symbol is so
large (e.g., a template) that it does not fit into this buffer, this
error is issued.

F-29

DEBUG-432 Error Messages Workstation User's Guide

This is a caution message. The definition can continue, and as long as
no errors happen, everything is OK. However, if an error is made after
this error message, that part of the debugger's symbol table used to
temporarily hold the definition is made inaccessible for the rest of this
debugging session. In the worst case, this will just mean a loss of
performance. The buffer is so large that only test cases have caused
this error.

314 'BAD CONTEXT FOUND WHEN MOVING DOWN CALL STACK'

While trying to execute one of the stack commands, TOP, DOWN, BOTM, UP,
or STACK, the debugger found that a context on the call stack is
inconsistent. The value of "cc" is not changed if the command is TOP,
DOWN, BOTM, or UP. In the case of a STACK command, the last context to
be displayed is the last good context. The next context that would have
been displayed (the "previous" of the last one displayed) is probably the
bad context.

315 'UNRECOVERABLE IP. FAULT'

This error will be announced after one of errors 290 - 293. It indicates
that the debugger tried twice to get ALTER MAP to work, but failed. At
this point, the user should re-ini tialize the system. The INIT SYSTEM
command will enable the user to examine the contents of memory.

316 'NO ADDRESSING POSSIBLE, MUST INITIALIZE 432 HARDWARE'

If a physical or interconnect address is keyed in to the debugger, but
the debugger detects that the IP board is not initialized, then the
address is not evaluated. Before 432/670 system memory may be examined
or modified, the user must initialize the system via either INIT or INIT
SYS.

318 'IP NOT WORKING. SYSTEM UNINITIALIZED'

319 'BREAKPOINTS ARE NOT SUPPORTED FOR THIS MEMORY IMAGE'

This error occurs if the user attempts to set a breakpoint after having
received one of the error messages: 129-132, 136-139 in response to the
DEBUG command.

320 'TOP OF MEMORY ADDRESS IS TOO LARGE'

When trying to -do an INIT SYSTEM command, the IP board reported back to
the debugger that some part of the last 256 bytes of memory are not
present. This means that the address given in the INIT SYSTEM command is
too large.

F-30

Workstation User's Guide DEBUG-432 Error Messages

321 'ILLEGAL EXPRESSION PRECEDING DOT, NOT A REFERENCE.

The dot operator is expecting a memory reference preceding it. This may
be in the form of an explicit template application, a REFERENCE variable,
or a field of either of these defined with an "@<expr>" kind of bit
string descriptor. For example:

?template node is
1?lson: @O access node;
??lson: @1 access node;
??end;
?p is 4A 3:node
?p.lson
?4"'3:node.lson
?p.lson.rson
1foo: integer := 5
?foo.

the "p" before the dot is ok
the "4 3:node" before the dot is ok
the "p.lson" before the dot is ok

the "foo" before the dot causes err 321

322 'ILLEGAL SYNTAX. ADDRESS MAY NOT FOLLOW "BO'"

The legal event breakpoints are "call", "fault", "inst", and "ret". These
are the only options when setting an event breakpoint:

BO FAULT
BO 9 3.7A3

is ok
is not ok

323 'ILLEGAL SYNTAX. ("CALL" I "FAULT" I "INST" I "RET") MUST FOLLOW "BO" ,

See also 322. These events only make sense for an event breakpoint
(i.e., Break On <Event».

324 'LEFT OPERAND TO 'SO IS ILLEGAL

The 'SO attribute of an address returns a reference to the object table
entry for the underlying segment being addressed. The only kinds of
addresses that use object table entries are logical addresses. All other
kinds of addresses (or any other non-address operands) used as a left
operand to 'SO will give error 324.

326 '432 IS UNINITIALIZED, ADDRESSING IS NOT SUPPORTED'

If the 432 is not initialized and an address is keyed in, this error may
be issued. The response is to initialized the 432 (e.g., via the INIT or
INIT SYSTEM command).

327 'ILLEGAL PHYSICAL ADDRESS'

F-31

DEBUG-432 Error Messages Workstation User's Guide

328 'BAD IP WINDOW OPERATION ON WINDOW Un. ENTRY FAULT CODE:
<reason>+'

<reason> => 'READ/WRITE'
'BUS ERROR'
'ACCESS RIGHTS'
'MEMORY OVERFLOW'
'ACCESS DIRECTION'
'POST TERMINATION'
'PARTIAL BLOCK OVERFLOW'

Before every 43203 ALTER MAP AND SELECT PHYSICAL SEGMENT operation that
the debugger performs, i t- checks the status of ail the "windows" (i. e. ,
43203 map entries). If a window has faulted, then error 328 is displayed
and the entry fault code bits are decoded and displayed below the error
message. The debugger does· not execute the ALTER MAP it was about to
attempt, but instead goes back to prompt the user for a command.

If this error occurs, the most recent debugger operation(s) on memory are
suspect. For more information see the "iAPX 432, INTERFACE PROCESSOR,
ARCHITECTURE REFERENCE MANUAL" (Order no. 171863-001).

The user may choose to ignore the error as a temporary glitch or to
attempt to discover the cause (e.g., via the interconnect registers).

329 'FATAL IP ERROR'

Before every 43203 ALTER PHYSICAL MAP AND SELECT DATA SEGMENT operation
the debugger performs, a Check is made-to see if-entry map 4 (the 43203
control window) is still accessible. If it is no longer accessible,
error 329 is issued. This error "typically" is the result of a bad
connection between the Series III and the 432/670. Another "typical"
occurrence of this error is when the power is turned off in the 432/670
system while the debugger is reading or modifying system memory.

330 'CANNOT SET TRACE t PROCESS NOT AT A BREAKPOINT'

The trace breakpoints, BE, BX, and BO, may only be defined/activated for
processes currently at a breakpoint. Note that BA breakpoints may be
defined/acti vated any time, regardless of the current breakpoint status
of the process.

331 '''<ad>'' IS NOT A PROCESS ACCESS DESCRIPTOR'

This error is in response to a "STACK OF <ad>" command and the <ad> does
not refer to a process. To find out what kind of object the <ad> does
point to, type either "<ad>", which wi 11 display the object and the
default template name selected, or type "<ad>'SD" which will display the
associated object table entry with the AD.

332 'TAB FORMAT: "nT" NOT SUPPORTED, X FORMAT USED"

F-32

This error is in response to an attempt to input "nT" as part of a
display list in a template field. The format is not supported.

Workstation User's Guide DEBUG-432 Error Messages

333 'X FORMAT NUMBER TOO BIG (255 IS MAX), 1 USED'

The maximum value permitted \-Ihen using the "X" notation to indicate
blanks is 255. If more is needed (very unlikely) the field may be
repeated (e.g., using the repeat count) as many times as is desirable.

335 'NO PROCESSES TO RESUME'

336 'BAD MEMORY.
337 'BAD MEMORY.
338 'BAD MEMORY.
339 'BAD MEMORY.
340 'BAD MEMORY.
341 'BAD MEMORY.
342 'BAD MEMORY.
343 'BAD MEMORY.
344 'BAD MEMORY.
345 'BAD MEMORY.

ILLEGAL CONTEXT DATA SEGMENT ADDRESS'
ILLEGAL DOMAIN ADDRESS'
ILLEGAL CONTEXT OBJECT ADDRESS'
ILLEGAL PROCESS AD FOR BREAKPOINT'
ILLEGAL PROCESS DS FOR BREAKPOINT'
ILLEGAL CURRENT CONTEXT FOR BREAKPOINT'
ILLEGAL PREVIOUS CONTEXT FOR BREAKPOINT'
ILLEGAL CONTEXT AD FOR BREAKPOINT'
ILLEGAL CONTEXT DS FOR BREAKPOINT'
ILLEGAL DOMAIN AD FOR BREAKPOINT'

The error messages 336 - 345 imply that the memory image has been
corrupted. These errors happen between the time that the debugger
discovers a process at a breakpoint and the time when the breakpoint is
announced on the CRT. During this time t the debugger is performing a
variety of internal bookkeeping functions using information from the
process and has run across inconsistent values in memory.

Unfortunately, these errors occur when the debugger is attempting to get
the necessary information to announce the breakpoint to the user. Since
the debugger discovers bad memory, it will not attempt to announce the
breakpoint.

346 'ILLEGAL EXPRESSION FOR TOP OF MEMORY'

The INIT SYSTEM command requires the physical address of the top of
memory as a parameter. The debugger will restrict all physical addresses
to be below this value, until another INIT SYSTEM, INIT, or DEBUG command
is given. The debugger uses the 256 bytes just below the top of memory
for operating the 43203 component.

F-33

DEBUG-432 Error Messages Workstation User's Guide

347 'FIELD "<name>" NOT FOUND'

When using the field of a reference in an expression or as the
destination of the ":=" operator (i.e., to modify memory), this error
will appear if the field is not part of the reference. This may occur if
the field is part of a variant that is not accessible due to the current
value of the disciminant:

?template foo is
??val: [0,8] is OU,I; -- displays the discriminant, [0,8]
??case [0,8] is
?? when 1 =>
?? baz: [1,8] is Ou,l;
?? when others =>
?? gorn:[2,8] is Ou,/;
??end case
??end
?!5:foo display the template, show what's there
val: 5
gorn: 7 notice the field "baz" did not display
?p is !5:foo
?p.baz := a -- will get error 347

348 'ILLEGAL MEMORY REFERENCED BY FIELD "<name>"

This error occurs when all of the memory referenced by a field of a
template is beyond the end of the actual memory present. Thi s error
happens when the template field is being used ei ther as the destination
of the ":=" operation or as part of an arithmetic expression.

Whenever a template is used in conjunction wi th a logical address, the
debugger limits the actual memory the template can use to the memory
between the logical address and the end of the segment referenced by the
logical address. If template field references memory outside of that
range (when it is used in an expression or as the destination of the ":="
operator), this error will be displayed.

349 'BREAKPOINT INCOMPATIBLE WITH PREVIOUSLY DEFINED ONE(S)'

F-34

The debugger uses the trace mode of 432 processes to accomplish the
setting of certain breakpoints (e.g., BO inst, BE 4A 5). This trace mode
only supports one setting: full trace, flow trace, fault trace, or no
trace. Therefore, for one process it is not possible to set breakpoints
that require a combination of settings. The combinations not allowed are:

BO INST
BO FAULT

not permitted with
not permitted with

BE/BX
BE/BX

and only one "BO" breakpoint may be set for a process at anyone time.

Workstation User's Guide DEBUG-432 Error Messages

350 'TOO MANY TRACE DEFINITIONS SET FOR PROCESS'

The maximum number of breakpoints that the user may set and have active
is 32. If an attempt is made to set a thirty third acti ve breakpoint,
this error may be displayed.

351 'BAD MEMORY: PROCESS GLOBALS ACCESS LIST WAS NOT FOUND'
352 'BAD MEMORY: CANNOT FIND DEBUGGER STATUS AD IN PROCESS GLOBALS'
353 'BAD MEMORY: CANNOT ACCESS DEBUGGER STATUS OS'
354 'BAD MEMORY: CANNOT CLEAR BREAKPOINT'

These errors (351 - 354) indicate that the 432 memory image has been
corrupted. The Series III resident debugger, while attempting to set or
clear a breakpoint, has come across an apparent inconsistency in the
process/breakpoint structure.

Error 351 indicates that the process does not have a Global access
segment AD. Error 352 indicates that the fifth slot in the global access
segment is nUll. Error 353 indicates that segment indicated by the fifth
AD in process globals is not a data segment AD.

356 'ONLY "BA" BREAKPOINTS MAY BE SET FOR ALL PROCESSES'

The "OF <process list>" clause of a breakpoint may only read "OF ALL" for
Break At (BA) breakpoints. For any of the tracing kinds of breakpoints,
BO, BE, or BX, only breakpointed processes may appear in the "OF
<process_list>" clause:

?examine
PROCESSES
9"16

CP: 9" 1B
9"21

?bo call of 9"21,9"1b
?bo call of all

ok

CONTEXT
3"1F
5"1
7"28

causes error 356

357 'BAD MEMORY. ILLEGAL CONTEXT AD "<ad>" ON THE STACK'

This error typically occurs when the STACK command is issued for an
executing process. The reason for the error is that the call stack for
the process is probabaly being updated by a processor at the same time
that the debugger is attempting to display it.

This error occurs when the "previous" field of a context AS points to a
segment that is not a context access segment.

358 '''<addr>'' MAY NOT BE USED AS AN INSTRUCTION ADDRESS'

Because it is not a logical address.

359 'INPUT LINE TOO LONG. INCLUDE ABORTED

This error should only happen if the include file is a binary file. The
error occurs when there are too many characters between end of lines.

F-35

DEBUG-432 Error Messages Workstation User's Guide

360 '"<file>" IS A REVISION FILE AND CANNOT BE LOADED'

The Linker can produce two outputs, a loadable EOD and a revision EOD.
Error 360 is issued if the file given in a LOAD or DEBUG command was a
revision EOD, not a loadable EOD.

361 'NO CURRENT PROCESS'

This error occurs in response to one of the stack commands t UP, DOWN,
TOP, BOTM, or STACK, when there is no current process.

362 'OUT OF MEMORY BOUNDARIES'

This error is announced whenever an attempt is made to address memory
that, according to the debugger's information, is not really present in
the EV system. The "typical" cause of this error is when memory is
corrupt or uninitialized. For example the DEBUG command might result in
this error if memory has not been previously loaded. Another example of
when this error might occur is after pulling a memory board from the EV
and then attempting to load memory via any of DEBUG, LOAD, or RESTORE,
but not having enough memory to hold the desired image.

The VERSION command may be used to get the debugger to print out its
current assumptions about the size of memory. Ei ther the INIT command
(not INIT SYSTEM) or the DEBUG command will cause the debugger to find
the Top Of Memory.

F-36

APPENDIX G
FORMAL DEFINITION OF UPDATE-432 COMMAND SYNTAX

This appendix contains a formal defini tion of the UPDATE-432 command
syntax (including the relevant portions of the RUN command syntax).
The definition uses a variant of Backus-Naur Form (BNF). The following
conventions are used:

<identifier>

"abc"

[]

{ ... }

a : b

An identifier in angle brackets is expanded in
another line. E.g. <template_definition>

Keywords are in upper case.
E.g. DEBUG, TEMPLATE, ALL

Lower case identifiers denote lexical classes
E.g. identifier, file_name

Character strings in double quotes stand for
literal items. E.g. ")", "=>"

Square brackets enclose optional items.

Parenthesis enclose several items; one of
these items must be used.

Braces surround an item or set of items which
may be repeated zero or more times.

A double hyphen precedes comments

A vertical line denotes exclusive or.

Concatenate the characters on either side of
the exclamation point.

The following is the definition of the UPDATE command line:

<UPDATE Command> · . -· . - [<Dev>J"RUN" [<Dev>]"UPDATE" <Command Tail> cr If

<Command Tail> ::= [<Dev>]<Path Name> [<Control List>]

<Control List> ::= {<Control>} [<Continued Line> : <NC Comment>]

<Continued Line>

<NC Comment> :: =

· . -· . -
"." ,

"&" [{ ascii }] cr If <Control List>

[{ ascii }]

G-1

UPDATE-432 Syntax Workstation User's Guide

<Control> ::= "REVISION" "(" <Path Name> H)"
"NEW" "(" <Path Name> "),,

<Path Name> ::= <Dev> <Filename>

<Dev> .. -.. -

<Filename>

ascii ::=

cr If ::=

G-2

a valid ISIS device name of the form :fn:, where
-- n is an integer between 0 and 9

.. -.. - -- a valid ISIS filename of the form name. ext

an ASCII character other than a cr If

a carriage-return line-feed pair

• 0 n APPENDIX H
UPDATE-432 ERROR MESSAGES

When UPDATE-432 detects
identifying the nature
following information:

an
of

error, it sends a message
the error. This message

to the user
contains the

A. The class of the error. There are three classes of errors:

1. Warnings
2. User Fatal Errors
3. Updater Internal Errors

Errors belonging to classes 2 and 3 terminate execution; class 1
errors, however, do not abort the Updater.

B. The type of the error. There are five types of errors:

1. EOD Errors
2. Object Manipulation Errors
3. Syntax Errors
4. . UDI Errors
5. Generic Errors (i.e. all others)

c. The exception code (a unique number identifying the error) and
the message text (occasionally including supplementary
information unique to each error). The following
exception-code/ message-text combinations may be received
(excluding UDI exceptions).

H-1

UPDATE-432 Eirors

Code

. FOOl
F002
F003
F004
F005
F006
F007
F008
F009
FOOA
FOOB
FOOC
FOOD
FOOE
FOOF
F010
FOll
F012
F013
F014
F015
F016
F017
F018
F019
F01A
F01B
F01C·
FOlD
F01E
F01F
F020
F02l
F022
F023
F024
F025
F026
F027
F028
F029
F02A
F02B

F02C
xxxx

H-2

-Workstation User's Guide

Message Text

SOG STACK OVERFLOW
MODULE NOT FOUND IN REVISION EOD
OTM ENTRY DOES NOT MATCH ANY SUCH OBJECT IN PMS
NO OBJECTS IN PMS REFERENCED BY SUCH OBJECT TABLE
BAD CONNECTION IN =WHICH STACK PTR= (UPDEPH)
DUPLICATED STORAGE DESCRIpTOR IN AN OBJECT TABLE
CAN'T FLUSH ALLOCATED MEMORY
DUPLICATED OBJECT IN PMS, ONLY FIRST PROCESSED
TRYING TO INSERT OBJECT IN EMPTY MODULE RING
COUNT ITEM DOES NOT FOLLOW ADDRESS ITEM
UNMATCHED MODULE SOG
CAN'T INSERT MODULE, MEMORY WON'T FLUSH
UNMATCHED SOG
ILLEGAL INDICATOR BYTE
PREMATURE END OF FILE
TRYING TO POP EMPTY SOG STACK
BAD CONNECTION IN =SELECT FILE= (UPDFIL)
BAD CONNECTION IN =WHICH FILE PTR= (UPDFIL)
BAD =SEEK FORWARD= (UPDFIL) -
BAD =SHORT SEEK BACK= (UPDFIL)
NO REFERENCE ITEM AFTER UPDATE MODULE SOG
UNCONTIGUOUS MODULE GROUPS
MODULE SOG EXPECTED BUT NOT FOUND
COORDINATES ITEM MISSING
EMPTY MODULE GROUP
UNMATCHED EOG
OT-MODULE MET BEFORE P-MODULE
MISMATCHED OBJECT COUNT
BAD PREAMBLE
ORIGIN ITEM MISSING
TIMESTAMP ITEM MISSING
PRINTNAME ITEM MISSING
EOD EOG ITEM MISSING
UNIQUE IDS DON'T MATCH
BAD COMMAND LINE SCAN
FILE NAME TOO LONG OR MISSING
OPEN PARENTHESIS MISSING
CLOSED PARENTHESIS MISSING
MISMATCHED PREAMBLES
BAD COMMAND
FAILED TO RENAME INTERNAL FILES
NO FILE NAME WAS EXPECTED
OTM WAS EXPECTED IN =PROCESS OTMS IN REOD=
(UPDREH)
EOD SOG DOES NOT SPECIFY A REVISION EOD
UNRECOGNIZED ERROR CODE

LATE DEFINITION (con't.)

Id: A Field has three optional parts:

leral Form: [Label] [Bit_identification] [IS Display_list]

abel: This is the name of the field. It is displayed when the
template is used to examine memory, unless the ::
notation is used. A field is referenced by using its
name (e.g., cc.domain).

leneral Form: id{~:}

lit_identification: Describes which bits are to be displayed
by the field.

leneral Form:

{

l Texpt [: Texp] , Texp] }
[@ number .] ... : number [ACCESS id]

lisplay_list: The list of conversion and editing specifica
tions to be followed for this field. The specifi
cations are performed from left to right.

leneral Form: Display_elem [, Display_elem] ...

Display_elem: Either gives a method to translate bits into
ascii characters, or describes the actual
ascii characters to be printed on the CRT.
A Display_elem may be prefixed with a
repeat count.

General Form:

Base*U : Width*
BaseS : Width
Enumerationtt

ASCII
[< Texpt>] id

I -- newline
string
number10X
l Display_list]

*Base and Width are decimal numbers (i.e., number10).

ttEnumeration: Translates values to text

General Form: (Enum_item [, Enum_item] ...)

. lid I Enum_ltem: [number =>] t . s nng

permissable expressions inside of templates.

Form:

[Texp I ± I) ... Tterm

[Tterm {;}] ... Tprimary

intel®---

DEBUG·432

REFERENCE CARD

Order Number: 172097-001

CONVENTIONS

BOLDFACE

I italics
[]

keywords and punctuation to be entered verbatim
(the debugger is case insensitive)
variable information
indicate an optional field
previous field may be repeated
one and only one field must be selected

CONTROL CHARACTERS

RUBOUT
CTRL·D
CTRL·Q
CTRL·R
CTRL·S

I CTRL.X

I CTRL.C
CTRL·B

CTRL·O

Delete preceding character
Interrupt 432 debugger execution and enter DEBUG·86
Resume console display
Redisplay current line or previous command line
Suspend console display
Delete all characters since last carriage return

Return to debugger command mode, 432 1/0 disabled
Enter mode which allows 432 1/0 and debugger com
mands. (Precede each 432 input line with %)
Enter mode which allows only 432 1/0.

THE COMMAND LINE

General Form: Command [; Command] ... < CR >

< CR > Carriage return. Terminates a command or comment.
Terminates a command line and starts a comment.

SYSTEM CONTROL

INIT [SYSTEM P _addr]
LOAD s-lIl_file
DEBUG [s-lIl_file]

START [number]

IPC { !f(1}, Expr2

initialize the 432 hardware
load a linked 432 program
[load file and] enable logical
addressing
start GDP number

broadcast Expr2 to processor Expr1
broadcast Expr2 to all processors

I ENVIRONMENT CONTROL

EXIT
INCLUDE s-lIl_file [LIST]

j BASE [number]

SUFFIX [number]

LOG [s-II/_file]
>LOG
>CRT

MODE

VERSION

exit the 432 debugger
include a file of debugger
commands
display (or set) the default output
base
display (or set) the default input
base
log all CRT interactions on a file
direct output to the log file only
redirect output to the CRT only
display the mode set by CTRL·C,
CTRL·B, CTRL·O
display debugger version number
and status

ADDRESSING (Le., Addr)

There are three kinds of addresses:

NAME
P_addr
'_addr

KIND
Physical
Interconnect

GENERAL FORMt

! number
!! number

L_addr Logical number 1 number {i ~~:~e;,
t Any expression which evaluates to an integer may be I

place of a number, however it must be enclosed in parentt

An id which has type REFERENCE may be used anywhere an A
pears, but not where P _addr, I_addr, or L_addr are used.

MEMORY EXAMINATION

{

[o id2]... }
General Form: Addr [: id1] [~~~GTH number]

Addr: Where examination is to begin.

id1: Template name. If absent, a default will be selected.

id2: Template field name(s). If present, the rightmost field
displayed. Otherwise, the entire template is used.

LENGTH number: How many times to re-apply template. If
LENGTH 1 is used.

ALL: Re-apply template until entire segment (or 64K) is dis

Examples:

!18:descr

111
!!4:b16

1713:mem all
cc:rad len 8
cp.status

starting at byte 18 of memory, apply tempi.
descr
use the default to display segment 111
display bytes 4 and 5 of interconnect spac,
(register 2)
using template mem, display all of segmer
show full rights of first 8 ADs of current c(
display the status field of the current proc1

BREAKPOINTS

General Form: [id:] {:~ ~~~; } [OF Process_list]t

BO Event

id: Breakpoint name. If absent, debugger will select a nar

Addr: BA breakpoints use an instruction address. If the
tion bit offset is absent, the default is taken frorr
struction segment header.

BE and BX breakpoints use an instruction segr
domain AD.

Event: {~:r}
RET

P r t {Addr [, Addr] ···1 -- process AD(s)
rocess_ IS: ALL __ only used with BA

tThe [OF process_list] field defaults to CP (current proce

ACTIVATE {~LLI id is breakpoint name

DEACTIVATE {~LL 1 id is breakpoint name

RESUME [ProceSS_list]
EXAMINE
SELECT Addr

restart the processes (defaults
list the broken processes
select a new default process ((

ADDRESSING (Le., Addr)

There are three kinds of addresses:

NAME
P_addr
'_addr

KIND
Physical
Interconnect

GENERAL FORMt

! number
!! number

L_addr L' I number t number {. number} oglca ! number

t Any expression which evaluates to an integer may be used in
place of a number, however it must be enclosed in parentheses.

An id which has type REFERENCE may be used anywhere an Addr ap
pears, but not where P _addr, '_addr, or L_addr are used.

MEMORY EXAMINATION

{

[. id2]... }
General Form: Addr [: id1] [~~~GTH number]

Addr: Where examination is to begin.

id1: Template name. If absent, a default will be selected.

id2: Template field name(s). If present, the rightmost field will be
displayed. Otherwise, the entire template is used.

LENGTH number: How many times to re-apply template. If absent,
LENGTH 1 is used.

ALL: Re-apply template until entire segment (or 64K) is displayed.

Examples:

!18:descr

1 t 1
! !4:b16

17t3:mem all
cc:rad len 8
cp.status

starting at byte 18 of memory, apply template
descr
use the default to display segment 1 t 1
display bytes 4 and 5 of interconnect space
(register 2)
using template mem, display all of segment 17t3
show full rights of first 8 ADs of current context
display the status field of the current process

BREAKPOINTS

General Form: [id:] {:~ ~~~~ }[OF Process_list]t

BO Event

id: Breakpoint name. If absent, debugger will select a name.

Addr: BA breakpoints use an instruction address. If the instruc
tion bit offset is absent, the default is taken from the in
struction segment header.

BE and BX breakpoints use an instruction segment or
domain AD.

Event: {~:r}
RET

P ,. t·1 Addr [, Addr] "'1 -- process AD(s)
rocess_ IS. ALL __ only used with BA

tThe [OFprocess_list] field defaults to CP (current process).

ACTIVATE 1 ~Ld id is breakpoint name

DEACTIVATE 1 ~LL I id is breakpoint name

RESUME [Process_list]
EXAMINE
SELECT Addr

restart the processes (defaults to CP)
list the broken processes
select a new default process (CP)

CALL STACK OPERATORS (Operate on CC, the curren

STACK [number] [OF Addr]

TOP
BOTM
UP
DOWN

display call stack for proc1

(defaults to CP)

move CC to first caller on 1
move CC to last called COl
move CC to its calling con
move CC to the next callel
context.

MEMORY CONTENTS FILING

SAVE P _addr {~~:GT~d~~mber I TO s-I/Uile

RESTORE s-lII_file [TO P _addr {~~:GT~~~mber II

DATA STRUCTURE NAME TABLE

There are three forms of invasion:

1) ?Reference. 2) ?Reference
?

3) ?R<
? ,

Reference: Any valid memory examination command. Af
ing a Reference, its field names are now a~
(and may be used to invade further).

In forms 2) and 3) the Reference is one debugger commanc
beginning with the dot is a subsequent command.

PATH
BACK
OUT

displays the current "invasion" path
backs up one element in the "invasion" path
clears the path

DIRECTORY OF USER NAMES

Listing names in the directory:

DIR [{ 1ypel] -- I displays ALL names by default

Type: The debugger name types are BREAK, TEl
REFERENCE, and INTEGER.

Removing names from the directory:

REMOVE- {~LL }
Type

Defining user names (see also BREAKPOINTS and TEMPU
DEFINITION):

INTEGER definition:
id : INTEGER [: = Expr]

REFERENCE definition:

idl IS Add{ 1 :, i~~ I] --- -- id2 is a template name

Examples of reference definitions:

line_12 is 9tOb.425 if 9l0b is an instruction segmer

P is 16 t 40
descrip is cp' sd
io_buff is 7 t 10.8:mem

type: BA line_12 OF ALL
abbreviate an AD
segment descriptor for current
name an address-template pair

IY MODIFICATION
orm: Addr [: id1] [. id2] ... : = Expr

Where modification is to begin.

emplate name. If absent, "88" will be used.

emplate field name(s). If present, only the bits indicated by
Ie rightmost name are modified. Otherwise, all memory
touched" by template id1 (Le., from Addr to high water mark)
, modified.

The value to be put into memory. If an Addr, then memory is
copied (default template is the one used on left of : =).

o
= 3f002f

Is.sp : = 40

j : = 411

write OFF into memory location 20 (88 is
default)
write 0 into interconnect register 2
write AD 3 t 2 (with all rights) into 4th slot
of 1 t 1
change Stack Pointer of current context
object
copy 32 bits from 4 t 1.0 (Left Hand
Template, ord, is default for 4 t 1)

;SION SYNTAX

[Expr I ± }] ... [{ ±}] Term

Primary * *] ... Primary

{

id } number
(Expr)
Addr [: id1t] [. id2] ...

d2 described under MEMORY EXAMINATION

~TE DEFINITION
orm: TEMPLATE id IS Component_list END

e name of the template

nent_list: The fields and variant parts of the template:

I Form: Field [; Field] ... [Variant-part]

nt-part: Permits conditional display. Similar to an ADA
variant record.

iral form:

~SE Bit_identification IS

-WHEN Choice [I Choice] ... =>]
_ [Component_list]

10 CASE

'_identification: The discriminant. A Bit_identification is
defined in the description of Field

oice: The bits from the discriminant are treated as a num
ber and compared against the Choices. A match
selects the Component_list of the WHEN.

ineral form:

number }
number .. number
OTHERS

number may be signed (e.g.,
- 8 .. - 5). However, negative
Choices will only match 32·bit
discriminants.

TEMPLATE DEFINITION (con't.)

Field: A Field has three optional parts:

General Form: [Label) [Bit_identification] [IS Display_list]

Label: This is the name of the field. It is displayed when the
template is used to examine memory, unless the ::
notation is used. A field is referenced by using its
name (e.g., cc.domain).

General Form: id{~:}

Bit_identification: Describes which bits are to be displayed
by the field.

General Form:

{

[Texpt [: Texp] , Texp] }
[@ number .] ... ~ number [ACCESS id]

Display_list: The list of conversion and editing specifica·
tions to be followed for this field. The specifi
cations are performed from left to right.

General Form: Display_elem [, Display_elem] ...

Display_elem: Either gives a method to translate bits into
ascii characters, or describes the actual
ascii characters to be printed on the CRT.
A Display_elem may be prefixed with a
repeat count.

General Form:

BaselU : Widthl

BaseS : Width
Enumeration tt
ASCII

[< Texp t >] id
I -- newline
string
number10X
[Disp'ay_'ist]

lBase and Width are decimal numbers (Le., number10).

ttEnumeration: Translates values to text

General Form: (Enum_item [, Enum_item] ...)

Enum_item: [number =>] \id
t

· I s nng

t Texp : permissable expressions inside of templates.

General Form:

Texp: [Texp I ± }] ... Tterm

Tterm: [Tterm {;}]. .. Tprimary

I~umberl Tprimary: (Texp)
BY_P
BI_P

Cross Development SystE
Workstation User's Guid

172097-00

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Inti
product users. This form lets you participate directly in the publication process. Your comments will he l

us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness ~
this publication. If you have any comments on the product that this publication describes, please conta,
your Intel representative. If you wish to order publications, contact the Intel Literature Department (S€

page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions f,
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ____________ _

NAME ___________________________________ _ DATE __________ _

TITLE __ _

COMPANYNAME/DEPARTMENT ___ _
ADDRESS __ ___

CITY ______________ _ STATE ___________ _ ZIP CODE _________ _
(COUNTRY)

Clo~c>o I",",ol"~ ,",oro if UI"III ronllir~ ~ writtAn rAnlv n

) LIKE YOUR COMMENTS ...

jocument is one of a series describing Intel products. Your comments on the back of this form
lelp us produce better manuals. Each reply will be carefully reviewed by the responsible
In. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
SSO Technical Publications, WW1 - 487
3585 SW 198th Ave.
Aloha, OR 97007

I II II I NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

inter
INTEL CORPORATION , 3585 S.w. 198th Avenue, Aloha, Oregon 97007 • (503) 681-8080

Printed in U.S.A .lY100/ 5K/01 / 04/ 82/ AP

